Понятие механическая работа. Механическая работа. Мощность

Для количественной характеристики процесса обмена энергиями между взаимодействующими телами в механике используют понятие «работа силы».

При прямолинейном движении тела и действии на него постоянной силы ($\overline{F}$), составляющей некоторый угол $\alpha $ с направлением перемещения тела ($\overline{s}$), работой силы ($A$) является величина равная:

Из формулы (1) следует, что при $\alpha \frac{\pi }{2}$ работа силы является положительной величиной, при этом проекция силы на направление перемещения совпадает с направлением вектора скорости движения тела. При $\alpha =\frac{\pi }{2}$ работа силы равна нулю.

При воздействии на тело сила может изменяться как по величине, так и по направлению, поэтому для общего случая выражение (1) для расчёта механической работы не применяют. Поступают следующим образом. Рассматривают бесконечно малое перемещение тела ($d\overline{s}$) на котором силу можно считать постоянной, а движение точки приложения силы прямолинейным. Тогда элементарной работой ($dA$) силы $\overline{F}$ на перемещении $d\overline{s}$ называют скалярную величину, равную:

где $\alpha $ - угол между векторами $\overline{F\ }и\ d\overline{s}$; $\left|d\overline{s}\right|$ - элементарный путь. При этом механическая работа силы на участке траектории от одной точки до другой находят как алгебраическую сумму элементарных работ на отдельных малых участках. В большинстве случаев суммирование заменяют интегрированием:

Для того чтобы вычислить интеграл (3) необходимо знать зависимость силы от пути по траектории от первой точки до второй. Если зависимость силы от пути задана графически, то механическая работа равна площади криволинейной трапеции, которая ограничена внизу осью абсцисс, вверху графиком F(s), справа и слева ординатами крайних точек.

Единицей измерения работы в Международной системе единиц (СИ) служит джоуль (Дж). Один джоуль - это работа, которую совершает сила в один ньютон на пути один метр.

\[\left=1Н\cdot 1м=1Дж.\]

Работа и кинетическая энергия тела, работа консервативных сил

Элементарная механическая работа равна бесконечно малому изменению кинетической энергии тела ($dE_k$):

Работа силы на конечном участке пути равна изменению кинетической энергии тела:

$E_{k2};;E_{k1}$ - кинетические энергии тела в конечной и начальной точках траектории. Выражение (5) выполняется при движении тел с любыми скоростями.

Работа консервативных сил равна изменению потенциальной энергии ($E_p$) системы взаимодействующих тел:

Формулы для вычисления работы некоторых сил

Работа силы упругости при растягивании пружины может быть найдена как:

где $k$ - коэффициент упругости; $\ x_2-x_1$ - удлинение пружины при изменении ее длины. При растяжении пружины работа силы упругости отрицательна.

Работа силы Кулона по перемещению заряда из точки, которая определена радиус-вектором ${\overline{r}}_1$ в точку, определяемую радиус-вектором ${\overline{r}}_2$ равна:

$r_1$;$\ r_2$ - длины радиус-векторов начальной и конечной точек траектории движения точки приложения силы, совершающей работу; $q_1,q_2$ - электрические заряды. При увеличении расстояния между зарядами силы отталкивания выполняют положительную механическую работу, силы притяжения - отрицательную. Работа силы Кулона не зависит от траектории движения тела.

Работу сил гравитации вычисляют, применяя формулу:

$m_1,m_2$ - массы взаимодействующих тел; $\gamma $ - гравитационная постоянная. Работа сил гравитации не зависит от траектории движения тел. Она определена только радиус-векторами начальной и конечной точек траектории.

Примеры задач с решением

Пример 1

Задание. Тело имеет массу, равную $m$. Его поднимают с ускорением $a$. Какова работа поднимающей силы, если тело подняли на высоту $h$?

Решение. Сделаем рисунок.

Используя второй закон Ньютона, опираясь на рис.1 найдем величину силы, которая совершает механическую работу:

В проекции на ось Y уравнение (1.1) имеет вид:

выразим F из (1.2): \

Если сила при движении тела остается постоянной, то работу найдем, используя формулу:

где по условию задачи $s=h$. Из рис.1 видно, что направление силы совпадает с направлением перемещения, поэтому окончательная формула для работы принимает вид:

Ответ. $A=m\left(a+g\right)h$

Пример 2

Задание. Некоторое тело массой $m$ поднимают вертикально вверх с поверхности Земли, действуя на него силой $\overline{F}$. Сила изменяется в зависимости от высоты по закону: $\overline{F}=-2m\overline{g}(1-Cy)$, где $C=const>0$. Считая поле силы тяжести однородным определите, какую работу выполняет сила на первой трети подъема? Начальная скорость тела равна нулю.

Решение. Найдем высоту подъема тела. Из закона изменения силы с высотой:

\[\overline{F}=-2m\overline{g}(1-Cy)(2.1)\]

очевидно, что тело будет подниматься, пока сила не станет равной нулю. Из этого условия найдем высоту подъема:

\[-2m\overline{g}\left(1-Cy\right)=0\to 2m\overline{g}\ne 0\to 1-Cy=0\to y=\frac{1}{C}.\]

Работу будем искать, используя ее определение в виде:

где $ds=dy$ так как движение происходит по оси Y; из уравнения $\overline{F}(y)$ следует, что $\overline{F}\uparrow \uparrow d\overline{s}$, формулу (2.2) представим как:

\}=\frac{5mg}{9C}.}\]

Ответ. $A=\frac{5mg}{9C}$

Чтобы иметь возможность охарактеризовать энергетические характеристики движения, было введено понятие механической работы. И именно ей в её разных проявлениях посвящена статья. Для понимания тема одновременно и лёгкая, и довольно сложная. Автор искренне старался сделать её более понятной и доступной для понимания, и остаётся только надеяться, что цель достигнута.

Что называют механической работой?

Что же так называют? Если над телом работает какая-то сила, и в результате действия оной тело перемещается, то это и называется механической работой. При подходе с точки зрения научной философии здесь можно выделить несколько дополнительных аспектов, но в статье будет тема раскрыта с точки зрения физики. Механическая работа - это не сложно, если хорошо вдуматься в написанные здесь слова. Но слово "механическая" обычно не пишется, и всё сокращается до слова «работа». Но не каждая работа является механической. Вот сидит человек и думает. Работает ли он? Мысленно да! Но механическая ли это работа? Нет. А если человек идёт? Если тело перемещается под действием силы, то это механическая работа. Всё просто. Иными словами, сила, действующая на тело, совершает (механическую) работу. И ещё: именно работой можно охарактеризовать результат действия определённой силы. Так ечли человек идёт, то определённые силы (трения, тяжести и т.д.) совершают над человеком механическую работу, и в результате их действия человек меняет точку своего нахождения, другими словами перемещается.

Работа как физическая величина равняется силе, что действует на тело, множимой на путь, который совершило тело под влиянием этой силы и в направлении, указываемом ею. Можно сказать, что механическая работа была сделана, если одновременно было соблюдено 2 условия: сила действовала на тело, и оно переместилось в направление её действия. Но она не совершалась или не совершается, если сила действовала, а тело не поменяло свое местонахождение в системе координат. Вот небольшие примеры, когда механическая работа не совершается:

  1. Так человек может навалиться на огромный валун с целью сдвинуть его, но сил не хватает. Сила действует на камень, а он не перемещается, и работа не происходит.
  2. Тело движется в системе координат, а сила равняется нулю или они все компенсировались. Такое можно наблюдать во время движения по инерции.
  3. Когда направление, в котором двигается тело, перпендикулярно действию силы. Когда поезд двигается по горизонтальной линии, то сила тяжести свою работу не совершает.


Зависимо от определённых условий механическая работа бывает отрицательной и положительной. Так, если направления и силы, и движения тела одинаковы, то происходит положительная работа. Примером положительной работы является действие силы тяжести на падающую каплю воды. Но если сила и направление движения противоположны, то значит происходит отрицательная механическая работа. Примером уже такого варианта является поднимающийся вверх воздушный шарик и сила тяжести, которая совершает отрицательную работу. Когда тело поддаётся влиянию нескольких сил, такая работа называется "работой результирующей силы".

Особенности практического применения (кинетическая энергия)


Переходим от теории к практической части. Отдельно следует поговорить о механической работе и её использовании в физике. Как многие наверняка вспомнили, вся энергия тела делится на кинетическую и потенциальную. Когда объект находится в положении равновесия и никуда не движется, его потенциальная энергия равняется общей энергии, а кинетическая равняется нулю. Когда начинается движение, потенциальная энергия начинает уменьшаться, кинетическая расти, но в сумме они равняются общей энергии объекта. Для материальной точки кинетическую энергию определяют как работу силы, которая ускорила точку от нуля до значения Н, а в формульном виде кинетика тела равна ½*М*Н, где М - масса. Чтобы узнать кинетическую энергию объекта, который состоит из множества частиц, необходимо найти сумму всей кинетической энергии частиц, и это будет кинетическая энергия тела.

Особенности практического применения (потенциальная энергия)

В случае, когда все действующие на тело силы консервативны, и потенциальная энергия равняется общей, то работа не совершается. Этот постулат известен как закон сохранения механической энергии. Механическая энергия в замкнутой системе является постоянной во временном интервале. Закон сохранения широко используют для решения задач из классической механики.

Особенности практического применения (термодинамика)


В термодинамике работа, которую совершает газ при расширении, рассчитывают по интегралу умножения давления на объем. Такой подход применим не только в тех случаях, когда есть точная функция объема, но и ко всем процессам, что могут быть отображены в плоскости давление/объем. Также применяется знание о механической работе не только к газам, но и ко всему, что может оказать давление.

Особенности практического применения на практике (теоретическая механика)


В теоретической механике все вышеописанные свойства и формулы рассматриваются более детально, в частности это проекции. Она даёт и свое определение для различных формул механической работы (пример определения для интеграла Риммера): предел, до которого стремится сумма всех сил элементарных работ, когда мелкость разбиения стремится к нулевому значению, называется работой силы вдоль кривой. Наверное, сложно? Но ничего, с теоретической механикой всё. Да уже и вся механическая работа, физика и другие сложности закончились. Дальше будут только примеры и заключение.

Единицы измерения механической работы

Для измерения работы в СИ используются джоули, а СГС использует эрг:

  1. 1 Дж = 1 кг·м²/с² = 1 Н·м
  2. 1 эрг = 1 г·см²/с² = 1 дин·см
  3. 1 эрг = 10 −7 Дж

Примеры механической работы

Для того чтобы разобраться окончательно с таким понятием как механическая работа, следует изучить несколько отдельных примеров, которые позволят рассмотреть её с множества, но далеко не всех сторон:

  1. Когда человек поднимает руками камень, то происходит механическая работа с помощью мускульной силы рук;
  2. Когда по рельсам едет поезд, его тянет сила тяги тягача (электровоза, тепловоза и т.д.);
  3. Если взять ружье и выстрелить из него, то благодаря силе давления, которую создадут пороховые газы, будет сделана работа: пуля перемещена вдоль ствола ружья одновременно с увеличением скорости самой пули;
  4. Механическая работа есть и тогда, когда сила трения действует на тело, заставляя его уменьшить скорость своего движения;
  5. Вышеописанный пример с шарами, когда они поднимаются в противоположную сторону относительно направления силы тяжести, тоже является примером механической работы, но кроме силы тяжести действует ещё и сила Архимеда, когда вверх поднимается всё, что легче воздуха.

Что такое мощность?


Напоследок хочется затронуть тему мощности. Работу силы, которая совершается в одну единицу времени, и называют мощностью. По сути мощность - это такая физическая величина, которая является отображением отношения работы к определённому промежутку времени, во время которого эта работа и совершалась: М=Р/В, где М - мощность, Р - работа, В - время. Единицу мощности в СИ обозначают в 1 Вт. Ватт равняется мощности, которая совершает работу в один джоуль за одну секунду: 1 Вт=1Дж\1с.

Вы знаете, что такое работа? Вне всякого сомнения. Что такое работа, знает каждый человек, при условии, что он рожден и живет на планете Земля. А что такое механическая работа?

Это понятие тоже известно большинству людей на планете, хотя некоторые отдельные личности и имеют довольно смутное представление об этом процессе. Но речь сейчас не о них. Еще меньшее число людей имеют представление, что такое механическая работа с точки зрения физики. В физике механическая работа - это не труд человека ради пропитания, это физическая величина, которая может быть совершенно никак не связана ни с человеком, ни с другим каким-нибудь живым существом. Как так? Сейчас разберемся.

Механическая работа в физике

Приведем два примера. В первом примере воды реки, столкнувшись с пропастью, шумно падают вниз в виде водопада. Второй пример - это человек, который держит на вытянутых руках тяжелый предмет, например, удерживает надломившуюся крышу над крыльцом дачного домика от падения, пока его жена и дети судорожно ищут, чем ее подпереть. В каком случае совершается механическая работа?

Определение механической работы

Практически все, не задумываясь, ответят: во втором. И будут неправы. Дело обстоит как раз наоборот. В физике механическая работа описывается следующими определениями: механическая работа совершается тогда, когда на тело действует сила, и оно движется. Механическая работа прямо пропорциональна приложенной силе и пройденному пути.

Формула механической работы

Определяется механическая работа формулой:

где A - работа,
F - сила,
s - пройденный путь.

Так что, несмотря на весь героизм уставшего держателя крыши, проделанная им работа равна нулю, а вот вода, падая под действием силы тяжести с высокого утеса, совершает самую, что ни на есть, механическую работу. То есть, если мы будем толкать тяжелый шкаф безуспешно, то проделанная нами работа с точки зрения физики будет равна нулю, несмотря на то, что мы прикладываем много сил. А вот если мы сдвинем шкаф на некоторое расстояние, то тогда мы проделаем работу, равную произведению приложенной силы на расстояние, на которое мы передвинули тело.

Единица работы - 1 Дж. Это работа, совершенная силой в 1 ньютон, по передвижению тела на расстояние в 1 м. Если направление приложенной силы совпадает с направлением движения тела, то данная сила совершает положительную работу. Пример - это когда мы толкаем какое-либо тело, и оно двигается. А в случае, когда сила приложена в противоположную движению тела сторону, например, сила трения , то данная сила совершает отрицательную работу. Если же приложенная сила никак не влияет на движение тела, то сила, совершаемая этой работой, равна нулю.