Допустимое сопротивление заземления таблица. Расчет заземляющих устройств

В случаях, когда естественные заземлители не удовлетворяют требованиям ПУЭ, применяют искусственные заземлители, которые в зависимости от формы и расположения в грунте делят на три группы:
углубленные - из полосовой или круглой стали, укладываемые горизонтально на дно котлованов зданий по периметру фундаментов;
горизонтальные - из круглой или полосовой стали, уложенные в траншею;
вертикальные - из стальных вертикально ввинченных или вдавленных в грунт стержней из круглой стали.
Для заземлителей обычно применяют круглую сталь диаметром 10-16 мм, полосовую сталь сечением 40 х 4 мм, отрезки угловой стали 50 х 50 х 5 мм. Длина вертикальных ввинчиваемых и вдавливаемых заземлителей - 4,5-5 м; забиваемых - 2,5-3 м. В производственных помещениях с электроустановками напряжением до 1 кВ применяют магистрали заземления из стальной полосы сечением не менее 100 мм 2 , а напряжением выше 1 кВ - не менее 120 мм 2 .
Искусственные углубленные заземлители, заранее заготовленные в мастерских, укладывают на дно котлованов под фундаменты строящихся зданий и сооружений. Вертикальные заземлители из круглой стали диаметром 16 мм ввертывают в грунт или вдавливают. Для этих целей используют различные передвижные механизмы (копры, автоямобуры, вибраторы, гидропрессы, бурильно-крановые машины) и ручные приспособления. Рытье траншей производят землеройными машинами.

Верх вертикальных заземлителей заглубляют на 0,6-0,7 м от уровня планировочной отметки земли. Над дном траншеи заземлители должны выступать на 0,1-0,2 м для удобства приварки к ним соединительных горизонтальных круглых стержней (сталь круглого сечения более устойчива против корррзии, чем полосовая). Горизонтальные заземлители укладывают в траншеи глубиной 0,6-0,7 м от уровня планировочной отметки земли.
Все соединения в цепях заземлителей выполняют сваркой внахлестку. Качество сварных швов проверяют осмотром, а прочность - ударом молотка массой 1 кг. Места сварки во избежание коррозии покрывают битумным лаком.
У мест ввода заземляющих проводников в здания устанавливают опознавательные знаки заземлителя. Расположенные в земле заземлители и заземляющие проводники не окрашивают. Если в фунте содержатся примеси, вызывающие повышенную коррозию, применяют заземлители увеличенного сечения, круглую сталь диаметром 16 мм, оцинкованные или омедненные заземлители или осуществляют электрическую защиту от коррозии.
Горизонтальные заземлители в местах пересечения с подземными сооружениями (кабелями, трубопроводами), с железнодорожными путями и автомобильными дорогами, а также в местах возможных механических повреждений защищают асбестоцементными трубами. По окончании монтажа заземлителей перед засыпкой траншей составляют акт освидетельствования скрытых работ.

Монтаж заземляющих и нулевых защитных проводников.

Заземляющие проводники прокладывают горизонтально и вертикально или параллельно наклонным конструкциям зданий.
В сухих помещениях заземляющие проводники укладывают непосредственно по бетонным и кирпичным основаниям с креплением полос дюбель-гвоздями (рис. 3.3, а), а в сырых, особо сырых помещениях и помещениях с едкими парами - на подкладках (рис. 3.3, б) или опорах (держателях) на расстоянии не менее 10 мм от основания (рис. 3.3, в, г).
Проводники крепят на расстояниях 600-1000 мм на прямых участках, 100 мм на поворотах от вершин углов, 100 мм от мест ответвлений, 400-600 мм от уровня пола помещений и не менее 50 мм от нижней поверхности съемных перекрытий каналов. Соединение заземляющих проводников и присоединение их к металлическим конструкциям зданий выполняют сваркой внахлестку, за исключением разъемных мест, предназначенных для измерений. При соединениях проводников длину нахлестки для сварки принимают равной ширине полосы при прямоугольном сечении и шести диаметрам - при круглом сечении.
Заземляющие проводники к корпусам машин и аппаратов присоединяют под заземляющий болт на их корпусах. Если машины установлены на салазках, их заземляют присоединением салазок к заземляющему проводнику. Открыто проложенные заземляющие и нулевые защитные проводники имеют отличительную окраску - по зеленому фону прокрашивают желтую полосу вдоль проводника.

Виды крепления заземляющих проводников :
а - к стене; б - на подкладках; в, г - на держателях для полосовой и круглой стали; У - дюбель; 2 - полоса; 3 - подкладка; 4 - держатель; 5 - круглая сталь
Места, предназначенные для подсоединения инвентарных переносных заземлителей, не окрашивают.

Технология монтажа устройств молниезащиты зданий и сооружений.
Устройства молниезащиты (молниеотводы) состоят из молние- приемников, непосредственно воспринимающих на себя удар молнии, токоотводов и заземлителей. Для монтажа молниеприемников стержни из круглой, полосовой, угловой, трубчатой стали сечением не менее 100 мм 2 , длиной не менее 200 мм устанавливают вертикально, укрепляя их на опоре или непосредственно на самом защищаемом здании или сооружении;
тросовые - из стального многопроволочного оцинкованного троса не менее 35 мм 2 (диаметр около 7 мм), укрепляют на опорах над защищаемыми зданиями или сооружениями;
молниеприемную сетку - из стальной проволоки диаметром 6 мм укладывают непосредственно на неметаллическую кровлю здания или под несгораемый утеплитель. В зависимости от категории здания по устройству молниезащиты сетки применяют с ячейками размерами 6 х 6; 3 х 12; 12 х 12; 6 х 24 м.
Молниеприемником могут служить также металлические кровля и другие металлические части, возвышающиеся над зданием (сооружением). Конструкции токоотводов и заземлителей в устройствах
молниезащиты подобны конструкциям заземляющих проводников и заземлителей в устройствах защитного заземления электроустановок, поэтому требования к их устройству и прокладке, а также методы производства монтажных работ аналогичны описанным выше.

Для защиты подземных металлических сооружений от коррозии , вызываемой блуждающими токами, применяют поляризованный дренаж. Защита обеспечивает отвод блуждающих токов от подземных металлических сооружений через дренажное устройство в рельсовую сеть или отрицательную шину тяговой подстанции.
Поляризованный электрический дренаж УЭДЗ-2 используют, если потенциал подземного металлического сооружения по отношению к рельсовой сети или к земле положительный либо знакопеременный и когда разность потенциалов «подземное сооружение рельс» больше разности потенциалов «подземное сооружение - земля».
УЭДЗ-2 устанавливают на стене здания, на столбе, на металлических опорах или специальной стойке на высоте 1-1,5 м от земли. К дренажу должен быть обеспечен доступ в любое время года. Дренажные кабели подводят через отверстия на дне корпуса.

Кабель, идущий к защищаемому металлическому сооружению, подключают к клемме со знаком (-). Дренажный кабель прокладывают в земле на глубину 0,5-0,7 м, в соответствии с типовой документацией, серия 5.905-6 «Узлы и детали электрозащиты подземных инженерных сетей от коррозии».

Прежде чем окончательно перейти к расчётной части заземления, ещё несколько выдержек из ПУЭ 1.7:

1.7.15. Заземлитель — проводящая часть или совокупность соединенных между собой проводящих частей, находящихся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду.

1.7.16. Искусственный заземлитель — заземлитель, специально выполняемый для целей заземления.

1.7.17. Естественный заземлитель — сторонняя проводящая часть, находящаяся в электрическом контакте с землей непосредственно или через промежуточную проводящую среду, используемая для целей заземления.

1.7.18. Заземляющий проводник — проводник, соединяющий заземляемую часть (точку) с заземлителем.

1.7.19. Заземляющее устройство — совокупность заземлителя и заземляющих проводников.

1.7.20. Зона нулевого потенциала (относительная земля) — часть земли, находящаяся вне зоны влияния какого-либо заземлителя, электрический потенциал которой принимается равным нулю.

1.7.21. Зона растекания (локальная земля) — зона земли между заземлителем и зоной нулевого потенциала.

Термин земля, используемый в главе, следует понимать как земля в зоне растекания.

Расшифруем некоторые термины о чём сказано выше, если через заземлитель пропустить ток, то на самом заземлителе и в точках земли, расположенных в непосредственной близости от него, возникнут потенциалы (относительно бесконечно удаленной точки), распределение которых показано на рис. 1. Из рисунка видно, что с удалением от места расположения заземлителя потенциал уменьшается, так как поперечное сечение земли, через которое протекает ток, увеличивается. В удаленных точках потенциалы близки к нулю. Таким образом, в качестве точек нулевого потенциала могут служить точки, достаточно удаленные от заземлителя, потенциалы которых практически равны нулю. Обычно достаточно расстояние несколько десятков метров. Крутизна кривой распределения потенциалов зависит от проводимости грунта: чем больше проводимость грунта, тем более пологую форму имеет кривая, тем дальше расположены точки нулевого потенциала.

Сопротивление, которое оказывает току грунт, называется сопротивлением растеканию . В практике сопротивление растеканию относят не к грунту, а к заземлителю и применяют сокращенный условный термин «сопротивление заземлителя ». Сопротивление заземлителя (Rзм ) определяется отношением напряжения (Uзм ) на заземлителе относительно точки нулевого потенциала к току (Iзм ), протекающему через заземлитель, поэтому основной расчет защитного заземления сводится к определению сопротивления растекания тока заземлителя. Это сопротивление зависит от размеров и количества заземляющих проводников, расстояния между ними, глубины их заложения и проводимости грунта.

Выбор схемы для расчёта заземления:

В ряд или контур (одиночное заземление рассмотрим позже, см. ) производится для того чтобы определить сопротивление сооружаемого заземления при эксплуатации, его размеры, форму и расчётную часть. Ряд или контур заземления состоит из вертикальных заземлителей, горизонтальных заземлителей и заземляющего проводника. Вертикальные заземлители заглубляются в почву на определенную глубину.

Горизонтальные заземлители соединяют между собой вертикальные заземлители. Заземляющий проводник соединяет контур заземления непосредственно с электрощитом.

Размеры и количество этих заземлителей, расстояние между ними, удельное сопротивление грунта – все эти параметры напрямую зависят на сопротивление заземления для расчёта. Ниже на схеме рис. 2, показаны самые распространенные вертикальные искусственные заземлители (электродов) — треугольником, в ряд и по контуру заземления:


Рис. 2


Рис. 3

На рис. 3 показана стандартная схема продольного разреза вертикального заземлителя для расчёта электрода одиночного, треугольного, в ряд или контурного заземления, где t(м) - в общем случае глубина траншеи, допускается 0,5 -0,8 м., длина стержня электрода (L) рекомендуется 1,5 — 3 м. Где Н — толщина верхнего слоя грунта, если грунт неоднородный, необходимо провести расчёт ρ экв для двухслойного грунта.

Формулы для расчета заземления:

Основной расчет защитного заземления сводится к определению сопротивления растекания тока заземлителя. Это сопротивление зависит от размеров и количества заземляющих проводников, расстояния между ними, глубины их заложения и проводимости грунта.

Целью расчета заземления является определить число заземляющих стержней и длину полосы, которая их соединяет.

Для перевода круглого металла (пруток, труба) в полосу: b = 2·d, где b — ширина полосы м м., d — диаметр прутка, трубы в м. и соответственно на оборот, полосу в диаметр: d = 0,5·b; для перевода уголка в диаметр: d = 0.95·b, где b — ширина полки уголка в м.

1. Расстояния между заземляющими стержнями берется из соотношения их длины (см. рис. 2), то есть:

a = 1хL; a = 2хL; a = 3хL

где, a — расстояния между заземляющими; L — длина стержня (электрода), 1 — 3 соотношение.

2. Сопротивление растекания тока одного вертикального заземлителя (стержня):


Где, ρ экв — эквивалентное удельное сопротивление грунта вычислим по формуле: ρ экв = Ψ·ρ, Ψ — повышающий коэффициент климатической зоны , ρ — удельное сопротивление грунта Ом·м; L – длина стержня, м; d – его диаметр, м; Т – расстояние от поверхности земли до середины стержня, м. (см. рис. 3, h 1 = 0,5l + t ), H — толщина верхнего слоя грунта при неоднородном грунте (двухслойном). Ниже на рис. 4 формулы и расположения электродов для расчёта с применением логарифмов:

Рис. 4 (прим. где h 1 = T)

3. В неоднородном грунте (двухслойный), эквивалентное удельное сопротивление грунта находится по формуле:

где – Ψ — сезонный климатический коэффициент (таблица 5); ρ 1 , ρ 2 – удельное сопротивления верхнего и нижнего слоя грунта соответственно, Ом·м (см. таблицу 5); Н – толщина верхнего слоя грунта, м; t — заглубление вертикального заземлителя (глубина траншеи) t = 0,5 — 0.8 м.

4. Количество необходимых заземлителей определяется по формулам:

4.1 методом приближения (как пользоваться данным методом расскажем в примерах позже):

где, k исп — отношение расстояния между заземляющими стержнями (см. пункт 1), R 1 = R 0 — (см. пункт 2), R нор — нормативные требования сопротивления (ПУЭ 1.7.101. или 1.7.103. см. страницу ).

4.2 с помощью таблиц (без учета сопротивления горизонтального заземления):

где, Ψ – коэффициент сезонности вертикального заземлителя (см. таблица 6, страница ); R н — нормируемое сопротивление растеканию тока заземляющего устройства, см. таблицу 8, ниже):




Таблица 8

Заземление - ценное сооружение, защищающее владельцев домашней техники от непосредственного контакта с весьма полезным, но крайне ретивым потоком электроэнергии. Заземляющее устройство обеспечит безопасность при «отгорании» нуля, что нередко случается на загородных ЛЭП при шквальном ветре. Оно исключит риски поражений при утечках на нетоковедущие металлические детали и корпус из-за прохудившейся изоляции. Сооружение защитной системы – мероприятие, не требующее сверх усилий и супер вложений, если грамотно сделан расчет заземления. Благодаря предварительным вычислениям будущий исполнитель сможет определиться с предстоящими расходами и с целесообразностью предстоящего дела.

Строить или не строить?

В уже изрядно забытую пору скудного количества бытовых электроприборов владельцы частных домов редко «баловались» устройством заземления. Считалось, что с задачей отведения утечки электричества превосходно справятся естественные заземлители, такие как:

  • стальные или чугунные трубопроводы, если вокруг них не уложена изоляция, т.е. имеется непосредственный плотный контакт с почвой;
  • стальная обсадка водяной скважины;
  • металлические опоры оград, фонарей;
  • свинцовая оплетка подземных кабельных сетей;
  • арматура фундаментов, колонн, ферм, заглубленных ниже горизонта сезонного промерзания.

Обратите внимание, что алюминиевая оболочка подземных кабельных коммуникаций не может использоваться в качестве элемента заземления, т.к. покрыта антикоррозионным слоем. Защитное покрытие препятствует рассеиванию тока в грунте.

Оптимальным естественным заземлителем признан стальной водопровод, проложенный без изоляции. Благодаря значительной протяженности минимизируется сопротивление току растекания. К тому же наружный водопровод укладывают ниже отметки уровня сезонного промерзания. Значит, на параметры сопротивления не будут влиять морозы и засушливая летняя погода. В эти периоды уменьшается влажность грунта, и, как следствие, увеличивается сопротивление.

Стальной каркас подземных железобетонных конструкций может служить элементом системы заземления, если:

  • с глинистым, суглинистым, супесчаным и влажным песчаным грунтом контактирует достаточная по нормам ПУЭ площадь;
  • в период сооружения фундамента арматура в двух или более местах была выведена на дневную поверхность;
  • стальные элементы данного естественного заземления были соединены между собой сваркой, а не проволочной связкой;
  • сопротивление арматуры, играющей роль электродов, рассчитано согласно требованиям ПУЭ;
  • установлена электрическая связь с заземляющей шиной.

Без соблюдения перечисленных условий подземные ж/б сооружения не смогут выполнить функцию надежного заземления.

Из всего набора вышеперечисленных естественных заземлителей расчетам подлежат только подземные ж/б конструкции. Точно вычислить сопротивление растеканию тока трубопроводов, металлической брони и каналов подземных силовых сетей не представляется возможным. Особенно если их прокладка осуществлялась пару десятилетий назад, и поверхность существенно изъедена коррозией.

Эффективность естественных заземлителей определяется путем банальных измерений, для производства чего нужно вызвать сотрудника местной энергослужбы. Показания его прибора подскажут, нужен или нет владельцу загородной собственности повторный заземляющий контур в качестве дополнения к существующим мерам заземления, выполненным компанией-поставщиком электроэнергии.


При наличии на участке естественных заземлителей с соответствующими нормам ПУЭ значениями сопротивления, устраивать защитное заземление нецелесообразно. Т.е. если прибор «агента» энергоуправления показал меньше 4 Ом, организацию контура заземления можно отложить «на потом». Однако лучше перестраховаться и предупредить вероятные риски, для чего и сооружается искусственное заземляющее устройство.

Расчеты для устройства искусственного заземления

Нужно признаться, что досконально рассчитать устройство заземления сложно, практически невозможно. Даже в среде профессиональных электриков практикуется метод приблизительного подбора количества электродов и расстояний между ними. Слишком много природных факторов влияет на результат работы. Уровень влажности нестабилен, зачастую доподлинно не исследована фактическая плотность и удельное сопротивление грунта и т.д. Из-за чего в конечном итоге сопротивление устроенного контура или единичного заземлителя отличается от расчетного значения.

Эту разницу выявляют посредством тех же измерений и корректируют путем установки дополнительных электродов или путем наращивания длины единичного стержня. Однако от предварительных расчетов отказываться не стоит, потому что они помогут:

  • исключить или сократить дополнительные затраты на приобретение материала и рытье ответвлений траншей;
  • выбрать оптимальную конфигурацию системы заземления;
  • составить план действий.

Для облегчения непростых и довольно запутанных расчетов разработано несколько программ, но для того чтобы грамотно ими воспользоваться пригодятся знания о принципе и порядке вычислений.


Составляющие защитной системы

Система защитного заземления представляет собой комплекс заглубленных в грунт электродов, соединенных электрической связью с заземляющей шиной. Основными ее составляющими являются:

  • один или несколько металлических стержней, передающих ток растекания земле. Чаще всего в качестве их применяются вертикально забитые в грунт отрезки длинномерного металлопроката: трубы, равнополочного уголка, круглой стали. Реже функцию электродов выполняют горизонтально зарытые в траншею трубы или листовая сталь;
  • металлическая связь, соединяющая группу заземлителей в функциональную систему. Зачастую это горизонтально расположенный заземляющий проводник из полосы, уголка или прутка. Его приваривают к верхушкам заглубленных в грунт электродов;
  • проводник, соединяющий расположенное в земле заземляющее устройство с шиной, а через нее с защищаемой техникой.

Две последних составляющих носят общее название – «заземляющий проводник» и, по сути, выполняют одну и ту же функцию. Разница заключается в том, что металлическая связь между электродами расположена в земле, а проводник, подключающий заземление к шине, находится на дневной поверхности. Отсюда разные требования к материалам и коррозионной устойчивости, а также разброс в их стоимости.

Принципы и правила вычислений

Совокупность электродов и проводников, именуемая заземлением, устанавливается в грунт, который является непосредственным компонентом системы. Потому в расчетах его характеристики принимают непосредственное участие наравне с подбором длины элементов искусственного заземления.

Алгоритм расчетов прост. Производятся они согласно имеющимся в ПУЭ формулам, в которых есть переменные единицы, зависящие от решения самостоятельного мастера, и постоянные табличные значения. Например, приблизительная величина сопротивления грунта.

Определение оптимального контура

Грамотный расчет защитного заземления начинается с выбора контура, который может повторять любую из геометрических фигур или обычную линию. Выбор этот зависит формы и размеров площадки, имеющейся в распоряжении мастера. Удобней и проще соорудить линейную систему, потому что для установки электродов потребуется вырыть только одну прямую траншею. Но расположенные в один ряд электроды будут экранировать, что неизбежно отразиться на токе растекания. Потому при расчетах линейного заземления в формулы вводится поправочный коэффициент.

Самой востребованной схемой для самостоятельного признают треугольник. Расположенные в вершинах его электроды при достаточном удалении друг от друга не мешают принятому каждым из них току свободно рассеиваться в земле. Трех металлических стержней для устройства защиты частного дома считают вполне достаточным количеством. Главное их правильно расположить: забить в грунт металлические стержни нужной длины на эффективном для работы расстоянии.

Расстояния между вертикальными электродами должны быть равными, независимо от конфигурации системы заземления. Расстояние между двумя соседними стержнями не должно быть равно их длине.

Выбор и расчет параметров электродов и проводников

Основными рабочими элементами защитного заземления являются вертикальные электроды, потому что рассеивать утечки тока придется именно им. Длина металлических стержней интересна, как с точки зрения эффективности защитной системы, так и с точки зрения металлоемкости и цены материала. Расстояние между ними определяет длину компонентов металлической связи: опять же расход материала для создания заземляющих проводников.

Обратите внимание, что сопротивление вертикальных заземлителей зависит преимущественно от их длины. Поперечные размеры несущественно влияют на эффективность. Однако величина сечения нормируется ПУЭ ввиду необходимости создать износостойкую защитную систему, элементы которой не менее 5-10 лет будут постепенно разрушаться коррозией.

Выбираем оптимальные параметры, учитывая, что лишние расходы нам вовсе не к чему. Не забываем, что чем больше метров металлопроката мы загоним в землю, тем больше пользы мы получим от контура. Метры «набрать» можно либо увеличивая длину стержней, либо увеличивая их количество. Дилемма: установка многократных заземлителей заставит изрядно потрудиться на поприще землекопа, а забивание длинных электродов кувалдой вручную превратит в крепкого молотобойца.

Что лучше: численность или длина, выберет непосредственный исполнитель, но существуют правила, согласно которым определяется:

  • длина электродов, потому что заглубить их нужно ниже горизонта сезонного промерзания как минимум на полметра. Так нужно, чтобы работоспособность системы не слишком страдала сезонных факторов, а также от засух и дождей;
  • расстояние между вертикальными заземлителями. Оно зависит от конфигурации контура и от длины электродов. Определить его можно по таблицам.

Отрезки металлопроката по 2,5-3 метра забивать кувалдой в землю трудно и неудобно даже с учетом того, что их 70 см будет погружено в заранее вырытую траншею. Рациональной длинной заземлителей считают 2,0м с вариациями вокруг этой цифры. Не забудьте, что длинные отрезки металлопроката нелегко и весьма накладно будет доставить на объект.

Грамотно экономим на материале

Уже упоминалось, что от сечения металлопроката мало что зависит, кроме цены материала. Разумней купить материал с наименьшей возможной площадью сечения. Без длительных рассуждений приведем наиболее экономичные и устойчивые к ударам кувалды варианты, это:

  • трубы с внутренним диаметром 32 мм и толщиной стенки 3 и более мм;
  • равнополочный уголок со стороной 50 или 60 мм и толщиной 4-5 мм;
  • круглая сталь с диаметром 12-16 мм.

Для создания подземной металлической связи лучше всего подойдет стальная полоса толщиной 4 мм или 6миллиметровый пруток. Не забываем, что горизонтальные проводники нужно приварить к вершинам электродов, потому к выбранному нами расстоянию между стержнями прибавим еще по 20 см. Надземный участок заземляющего проводника можно сделать из 4миллиметровой стальной полосы шириной 12 мм. Вывести на щиток его можно от ближайшего электрода: так и копать меньше придется, и материал сэкономим.

А вот теперь непосредственно формулы

С формой контура и с размерами элементов мы определились. Теперь можно загнать требующиеся параметры в специальную программу для электриков или воспользоваться приведенными ниже формулами. В соответствии с типом заземлителей выбираем формулу для производства расчетов:

Или воспользуемся универсальной формулой для расчета сопротивление одного вертикального стержня:

Для вычислений потребуются вспомогательные таблицы с приблизительными значениями, зависящими от состава грунта, его усредненной плотности, способности удерживать влагу и от климатической зоны:


Рассчитаем количество электродов, не учитывая значение сопротивления заземляющего горизонтального проводника: