Научные открытия сделанные пожилыми людьми. Какие открытия совершил Стивен Хокинг

– Сева Бардин

Специалисты изучили истории «больших прорывов» нескольких поколений нобелевских лауреатов, великих изобретателей и представителей мира искусства, и вычислили наиболее плодотворный возраст для каждой из этих групп.

В 21 год бывший солист группы LCD Soundsystem Джеймс Мёрфи совершил то, что сам назвал «самой большой ошибкой своей жизни» — отказался работать в качестве сценариста над ситкомом «Сайнфелд», который вот-вот должен был запуститься.

Вместо этого он стал слоняться без особого дела, подрабатывая вышибалой, позже устроился диджеем, и, в конце концов, к 35 годам выпустил первый альбом LCD Soundsystem.

Мёрфи к этому времени был старше большей части своих коллег-музыкантов, однако ситуация, когда «большой прорыв» в жизни творческого человека происходит в зрелом возрасте, совсем не редкость. К такому выводу пришли специалисты Национального бюро экономического анализа.

Авторы исследования собрали данные о том, на какие периоды жизни приходятся пики карьеры великих изобретателей и учёных-лауреатов Нобелевской премии и выяснили, что наиболее часто это происходит к концу третьего десятилетия:

На графике указана частота открытий, совершаемых нобелевскими лауреатами и великими изобретателями в том или ином возрасте на протяжении 20 века. Творческая активность нобелевских лауреатов отмечена сплошной синей линией, великих изобретателей — красным пунктиром

Как можно заметить из следующего графика, со временем изобретения делаются людьми слегка более зрелого возраста:

Кроме того, среди отличившихся в чисто теоретических научных дисциплинах (физика), оказывается больше молодых людей, чем среди тех, кто преуспел в прикладных областях (медицина). В ходе исследования 1977 года выяснилось, что средний возраст будущих нобелевских лауреатов-физиков, когда они только брались за совершение своих великих открытий, равнялся 36 годам. У химиков этот средний возраст равнялся 39 годам, а у докторов медицины — 41 году.

Так почему же «большой прорыв» имеет тенденцию происходить именно под 40? Самый очевидный фактор — это образование. В среднем, академические степени получают лет в 30. Затем несколько лет уходит на обучение на рабочем месте и вуаля! В то же время среди людей науки большие прорывы в пожилом возрасте менее часты, поскольку со временем мы всё меньше вкладываем в образование, и наши академические научные познания постепенно становятся менее релевантными.

В то же время у человечества имеются все доказательства того, что гений с возрастом нисколько не становится меньше. Огромное количество стихотворных шедевров было написано, когда их авторам уже перевалило за 50. А лучшие полотна Поля Сезанна, например, были написаны в последние годы его жизни (Сезанн умер в 69 лет).

В научном отчёте Национального бюро экономического анализа говорится, что учёные-теоретики (те, кто решает задачи, связанные с поисками нового мышления), достигают пика раньше учёных-экспериментаторов (ищущих ответы на вопросы, основываясь на уже существующих познаниях) примерно на 4,6 лет.

По горизонтали — возраст, по вертикали — частота значительных открытий: до 1935 года, с 1935 по 1965, после 1965 года

Это происходит по двум причинам:

1) теоретикам не нужно ждать проведения огромного количества экспериментов, чтобы закончить и опубликовать свои труды.

2) вероятно, более важно то, что «свежий взгляд» позволяет молодым людям видеть пустоты и изломы, существующие в их научной сфере, которые более опытные специалисты уже не замечают.

График наибольшей творческой активности у теоретиков (сплошная линия) и экспериментаторов (пунктир) среди нобелевских лауреатов. По горизонтали — возраст, по вертикали — частота, с которой в том или ином возрасте совершались открытия

«Наиболее важные концептуальные работы обычно требуют отвлечения от уже существующих парадигм. Лучше всего это удаётся людям, которые только входят в новую для них область, тем, кто ещё не успел в ней полностью ассимилироваться».

То есть, по всей видимости, гениальность — это способность опытного ума посмотреть на проблему свежим взглядом.

Один из величайших физиков современности Стивен Хокинг скончался 14 марта 2018 года на 77 году жизни. Во время обсуждения научных работ английского физика в ученой среде нередко можно услышать сравнение Стивена Хокинга с Альбертом Эйнштейном и Исааком Ньютоном. Какими же научными открытиями заслужил столь лестное сравнение талантливый исследователь, специализирующийся на изучении Вселенной?

Семья ученых

Не будет преувеличением сказать, что сама судьба уготовила Стивену Хокингу карьеру ученого. Родился будущий выдающийся физик 8 января 1942 года в семье преуспевающего ученого, специализирующегося на медицинских исследованиях. Не удивительно, что отец мальчика хотел, чтобы сын пошел по его стопам, продолжив семейное дело. Но юного Стивена с детства больше интересовала математика, физика и астрономия. Мальчик страстно желал узнать, как же на самом деле устроена Вселенная. Надо отдать должное отцу Стивена Хокинга. Видя, увлечение сына техникой, он не стал ломать ему судьбу, настаивая на том, чтобы он изучал медицину. Вместо этого он как мог поощрял его занятия математикой. И его ожидания оправдались. Сын не только преуспел в точных науках, получив звание профессора Оксфорда, его открытия в области физики вошли в золотой фонд современной науки. Правда, еще в возрасте 20 лет у молодого человека был обнаружен амиотрофический боковой склероз, который со временем превратил ученого в инвалида, прикованного к инвалидному креслу. Тем не менее, несмотря на серьезное заболевание, Стивен Хокинг упрямо продолжал совершать одно научное открытие за другим.

«Теория всего»

Исследуя особенности зарождения и развития Вселенной, Стивен Хокинг совершил едва ли не самое важное открытие в сфере современной астрофизики. С помощью уравнений Альберта Эйнштейна, написанных для общей теории относительности, Стивен Хокинг первым в мире сумел математически описать состояние Вселенной в момент ее рождения. Фактически английский ученый доказал, что у Вселенной было начало. Правда, в этом случае возникает вопрос, что существовало до ее рождения. К сожалению, ответить на этот вопрос Стивен Хокинг не успел. Тем не менее на основе изучения сложнейших научных дисциплин квантовой механики и квантовой гравитации талантливый физик попытался совершить невозможное - создать «Теорию всего».

Заглянуть в черную дыру

Второе научное открытие мирового уровня, сделанное Стивеном Хокингом в конце XX века, было связано с жизнедеятельностью черных дыр Вселенной. До появления теоретических выкладок Стивена Хокинга считалось, будто черные дыры безвозвратно поглощают абсолютно «все» - от материи до различных видов энергии - и не имеют горизонта событий. Данное утверждение было опровергнуто научными работами Стивена Хокинга, в которых физик однозначно доказал, что черные дыры способны не только поглощать, но и излучать различные виды элементарных частиц, а также информационные потоки благодаря квантовым процессам, происходящим внутри них.

Модный писатель

В особую заслугу современным обществом Стивену Хокингу ставится его активная жизненная позиция по вопросу популяризации науки. Редкий ученый, с головой погруженный в сложнейшие исследования в области квантовой физики, астрономии и математики, способен доходчиво объяснить предмет своего исследования обычному обывателю. Стивен Хокинг сумел это сделать, написав за свою жизнь 14 научно-популярных книг, которые разошлись миллионными тиражами. Но наиболее востребованным у читателя стало его эссе «Краткая история времени», вышедшее в 1988 году. В книге ученый попытался доступным языком рассказать своим читателям о том, что такое пространство и время, черные дыры, как появляются новые Галактики, когда родилась и через какое время умрет Вселенная. Произведение оказалось настолько занимательным, что читалось увлекательнее любого детектива. Впоследствии вместе со своей дочкой Люси Стивен Хокинг создал похожую по содержанию книгу, адаптировав ее для маленьких детей. Исключительно благодаря Стивену Хокингу малыши всего мира смогли узнать, как же на самом деле устроен мир, в котором они живут.

Наука - тяжёлое и не всегда благодарное занятие. Долгие годы экспериментов могут не привести к ощутимому результату, потенциально важные исследования часто не получают необходимого финансирования, а история забывает имена людей, приложивших руку к большим открытиям. Look At Me собрал восемь учёных, которые помогали в работе над важными открытиями - а иногда и в одиночку их совершали, - но были забыты.

Розалинд Франклин

помогла открыть структуру молекулы ДНК


Если вы знаете хоть что-нибудь о естественных науках, вы, скорее всего, слышали имена Фрэнсиса Крика и Джеймса Уотсона - учёных, которые получили Нобелевскую премию за открытие структуры молекулы ДНК. На самом деле их история не так проста: возможно, Крик и Уотсон просто использовали исследования своей коллеги Розалинд Франклин и присвоили её заслуги себе. Когда Франклин было 33, она пришла к выводу, что ДНК состоит из двух цепей и фосфатного остова. Своё открытие Франклин подтвердила рентгеновскими снимками. Считается, что коллега Франклин показал её исследование и снимки Крику и Уотсону, которые использовали её находки для собственной работы. Более того, Уотсон уговорил Франклин опубликовать её исследование, - но уже после того, как он опубликовал своё . Её работа выглядела уже не открытием, а подтверждением того, что написали Уотсон и Крик. Учёные получили Нобелевскую премию, а имя Франклин было забыто.

Альфред Рассел Уоллес

помог в создании теории эволюции


Теория эволюции в первую очередь ассоциируется с именем Чарльза Дарвина и его книгой «Происхождение видов». Но есть ещё один учёный, который сыграл в исследовании эволюции не менее важную роль. Альфред Расселл Уоллес был британским исследователем, который независимо от Дарвина пришёл к теории эволюции и естественного отбора. Сделав ряд наблюдений в малазийской экспедиции середины XIX века, Уоллес записал их и послал Дарвину, чтобы узнать его мнение. Работа Уоллеса вдохновила Дарвина на новые идеи об эволюции, и они опубликовали совместную статью, а затем Дарвин в 1858 году опубликовал самостоятельную. Уоллес испытывал финансовые трудности почти всю жизнь. Он много путешествовал (например, в район реки Амазонки и на Дальний Восток) и финансировал свои экспедиции, продавая животных, насекомых и растения, которых собирал. После того, как он потерял большую часть денег, вложив их в провальные предприятия, Уоллес зарабатывал только научными публикациями.

Сесилия Пейн-Гапошкина

открыла состав звёзд и Солнца


Сесилия Пейн - женщина-учёный, чьи открытия дискредитировали её начальники. В юности Пейн получила грант и изучала ботанику, физику и химию в Кембриджском университете. К сожалению, образование Пейн мало что дало: Кембридж в то время не выдавал учёные степени женщинам. Пейн заинтересовалась астрономией и в итоге перешла в Институт Рэдклифф, где стала первой женщиной, получившей докторскую степень по астрономии.

Самым большим вкладом Пейн в астрономию было то, что она элементы, из каких состоят звёзды. Её коллеги-мужчины не восприняли её исследование всерьёз. Астроном Генри Норрис Рассел, рецензировавший работу Пейн, убедил её не печатать своё исследование. Доводы Рассела заключались в том, что работа Пейн противоречила знаниям того времени - и поэтому научное сообщество её бы не приняло. Четыре года спустя Рассел поменял своё мнение: он опубликовал собственную статью, в которой описывал , из чего состоит Солнце. Выводы Рассела были очень похожи на выводы Пейн - и он получил признание за всю сделанную ею работу. По злой иронии в 1976 году Пейн даже получила премию Генри Норриса Рассела за свои достижения в астрономии.

Питер Бергманн

помогал в разработке единой теории поля


Величайший физик XX века Альберт Эйнштейн в последние годы своей жизни доверял все расчёты более молодым учёным, своим ассистентам. Помощники Эйнштейна встречались с ним каждое утро, узнавали его мнение по разным вопросам, а потом проводили остаток дня, занимаясь исследованиями. На следующий день Эйнштейн смотрел на их расчёты, оценивал их, давал советы - и работа продолжалась. Самым известным помощником Эйнштейна был физик Питер Бергманн. Бергманн родился в 1915 году - в том же году, когда Эйнштейн заканчивал работу над теорией относительности. Бергманн с самого детства интересовался наукой, а в конце 1930-х стал протеже Эйнштейна. Физик помогал Эйнштейну разработать единую теорию поля.

Когда в 1915 году Эйнштейн создал новую теорию гравитации (а теория относительности по-новому объясняла гравитацию) , он понял, что свойства пространства-времени нельзя отделить от гравитационного поля. Он пытался объединить существующую на тот момент физику с физикой гравитационного поля. Несмотря на то что ему это так и не удалось, расчёты Эйнштейна и Бергманна оказались очень важными для физики XX века. Теперь мы знаем, что есть и другие силы, которые не менее важны для поведения частиц, и их свойства не только электромагнитные и гравитационные. Так или иначе, большинство расчётов делал Бергманн. Он издал несколько книг по теории относительности, а после смерти Эйнштейна и дальше исследовал гравитацию.

Милтон Хьюмасон

помог в создании Закона Хаббла


Милтон Хьюмасон был помощником Эдвина Хаббла, астронома, в честь которого назван самый известный в мире космический телескоп. Хьюмасон отчислился из школы и нанялся работать грузчиком. Он возил материалы для строительства обсерватории Маунт-Вилсон в Калифорнии. После того как строительство закончилось, Хьюмасон пошёл работать уборщиком в обсерваторию. Параллельно Хьюмасон подрабатывал по ночам, помогая астрономам. В конце концов в 1919 году его приняли в штат. По чистой случайности Хьюмасон не стал человеком, открывшим Плутон. За 11 лет до Клайда Томбо, считающегося первооткрывателем Плутона, Хьюмасон сделал серию фотографий, на которых впервые появилось изображение Плутона. Считается, что он не заметил карликовую планету, потому что её закрыл дефект на фотографиях. Хьюмасона называют «забытым героем», помогавшим в создании Закона Хаббла, который описывает движение галактик во Вселенной.

Говард Флори и Эрнст Чейн

открыли медицинские свойства пенициллина


Учёным, открывшим пенициллин, считают Александра Флеминга. На самом деле Флеминг просто обнаружил вещество - но не знал, что с ним делать. Флеминг открыл пенициллин почти случайно, в 1928 году. Культура, содержащая пенициллин, была слишком нестабильной, антибиотик невозможно было изолировать в чистом виде - и Флеминг с коллегами забросили исследование.

Людьми, сделавшими из пенициллина лекарство, которое изменило медицину, были Говард Флори и Эрнст Чейн. В 1939 году они провели ряд экспериментов на культуре (проще говоря, плесени) Флеминга и смогли сделать из неё лекарственный препарат. Учёные выбрали пенициллин для экспериментов по двум причинам: Чейна привлекала нестабильность вещества, а Флори интересовало то, что это единственное вещество, способное побороть стафилококк. Справедливости ради, хотя имя Флеминга хорошо известно, Флори и Чейн тоже не забыты историей: втроём вместе с Флемингом они получили Нобелевскую премию по физиологии и медицине в 1945 году «за открытие пенициллина и его целебного воздействия при различных инфекционных болезнях».

Нетти Стивенс

открыла разницу между женским и мужским набором хромосом


К началу XX века биологи и философы предложили множество теорий о том, как определяется пол человека. Некоторые говорили, что на это влияют внешние факторы во время беременности, другие - что наследственные признаки. Теперь мы знаем, что пол человека зависит от 23-й пары хромосом, X и Y. Большинство учебников говорят, что их открыл Томас Морган . На самом деле открытие совершила женщина-учёный Нетти Стивенс. Она стала жертвой того, что называют «эффектом Матильды» - когда достижения женщин-учёных скрывают или отрицают.

Стивенс изучала половое определение у мух дрозофил и пришла к выводу, что они зависят от X и Y хромосом. Хотя многие пишут, что Стивенс работала вместе с Морганом, почти все наблюдения она проводила самостоятельно. Морган получил Нобелевскую премию за всю работу, проделанную Стивенс. Позже он опубликовал в журнале Science, в которой рассказывал, что Стивенс выступала в исследовании просто как лаборант и её нельзя называть настоящим учёным. При этом именно Нетти Стивенс начала исследование - и даже принесла мух дрозофил в лабораторию Моргана.

Лиза Мейтнер

помогла открыть деление ядра


Исследования Лизы Мейтнер в области ядерной физики привели к открытию деления ядра - того факта, что ядро атома может разделиться надвое. Это открытие, в свою очередь, стало фундаментом для создания атомной бомбы. В 1907 году австрийка Мейтнер окончила Венский университет и переехала в Берлин, где стала работать вместе с химиком Отто Ганом. После того как нацисты аннексировали Австрию в 1938-м, еврейка Мейтнер была вынуждена уехать в Стокгольм. Там она продолжила работать с Ганом, тайно встречаясь с ним и переписываясь.

Ган провёл эксперименты, доказавшие деление ядра, но не мог придумать никакого объяснения тому, что он обнаружил, - это сделала за него Мейтнер. Но Ган опубликовал исследование, не упомянув её как соавтора. Некоторые историки науки считают, что Мейтнер понимала, почему он так сделал - в нацистской Германии он не мог себе этого позволить. Не только национальность, но и пол Мейтнер сыграл свою роль: учёные в нобелевском комитете отказывались признавать заслуги женщины-учёного. Ган получил Нобелевскую премию в 1944-м за открытие деления ядра один, без Мейтнер. Тем не менее её современники и коллеги говорили, что работа Мейтнер была очень важна для этого открытия. Но поскольку её имени не было в исследовании Гана - и она не получила Нобелевскую премию, - долгие годы имя Мейтнер никто не знал.

Наше понимание окружающего мира в расцвет технологической эры - всё это, и многое другое, является результатом работы многочисленных ученых. Мы живем в прогрессивном мире, который развивается огромными темпами. Этот рост и прогрессия - продукт науки, многочисленных исследований и экспериментов. Все, чем мы пользуемся, включая автомобили, электричество, здравоохранение и науку - результат изобретений и открытий этих интеллектуалов. Если бы не величайшие умы человечества, мы все еще жили бы в Средневековье. Люди воспринимают все как должное, но стоит все же отдать дань тем, благодаря кому мы имеем то, что имеем. В этом списке представлены десять величайших ученых в истории, изобретения которых изменили нашу жизнь.

Исаак Ньютон (1642-1727)

Сэр Исаак Ньютон — английский физик и математик, широко расценивается, как один из самых величайших ученых всех времен. Вклад Ньютона в науку широк и неповторим, а выведенные законы все еще преподаются в школах, как основа научного понимания. Его гений всегда упоминается вместе со смешной историей — якобы, Ньютон открыл силу тяжести благодаря яблоку, упавшему с дерева ему на голову. Правдива история про яблоко, или нет, но Ньютон также утвердил гелиоцентрическую модель космоса, построил первый телескоп, сформулировал эмпирический закон охлаждения и изучил скорость звука. Как математик, Ньютон также сделал уйму открытий, повлиявших на дальнейшее развитие человечества.

Альберт Эйнштейн (1879-1955)

Альберт Эйнштейн — физик немецкого происхождения. В 1921 ему присудили Нобелевскую премию за открытие закона фотоэлектрического эффекта. Но самое важное достижение величайшего ученого в истории — теория относительности, которая наряду с квантовой механикой формирует базис современной физики. Он также сформулировал отношение эквивалентности массовой энергии E=m, который назван как самое известное уравнение в мире. Он также сотрудничал с другими учеными на работах, таких как Статистика Бозе-Эйнштейна. Письмо Эйнштейна президенту Рузвельту в 1939, приводя в готовность его возможного ядерного оружия, как предполагается, является ключевым стимулом в разработке атомной бомбы США. Эйнштейн полагает, что это самая большая ошибка его жизни.

Джеймс Максвелл (1831-1879)

Максвелл — шотландский математик и физик, ввел понятие электромагнитного поля. Он доказал, что свет и электромагнитное поле перемещаются с одинаковой скоростью. В 1861 Максвелл сделал первую цветную фотографию после исследований в поле оптики и цветов. Работа Максвелла над термодинамикой и кинетической теорией также помогла другим ученым сделать целый ряд важных открытий. Распределение Максвела-Больцмана — еще один важнейший вклад в развитие теории относительности и квантовой механики.

Луи Пастер (1822-1895)

Луи Пастер, французский химик и микробиолог, главным изобретением которого стал процесс пастеризации. Пастер сделал ряд открытий в области вакцинации, создав вакцины от бешенства и сибирской язвы. Он также изучил причины и выработал методы профилактики болезней, чем спас множество жизней. Все это сделало Пастера “отцом микробиологии”. Этот величайший ученый основал институт Пастера, чтобы продолжить научные исследования во многих областях.

Чарльз Дарвин (1809-1882)

Чарльз Дарвин является одной из наиболее влиятельных фигур в истории человечества. Дарвин, английский натуралист и зоолог, выдвинул эволюционную теорию и эволюционизм. Он обеспечил основание для понимания происхождения человеческой жизни. Дарвин объяснил, что вся жизнь появилась от общих предков и что развитие происходило посредством естественного отбора. Это одно из доминирующих научных объяснений разнообразия жизни.

Мария Кюри (1867-1934)

Марии Кюри присудили Нобелевскую премию в Физике (1903) и Химии (1911). Она стала не только первой женщиной, которая получила премию, но также и единственной женщиной, сделавшей это в двух полях и единственным человеком, который достиг этого в разных науках. Ее основным полем исследования была радиоактивность — методы изоляции радиоактивных изотопов и открытие элементов полония и радия. Во время Первой мировой войны Кюри открыла первый центр рентгенологии во Франции, а также разработала мобильный полевой рентген, которые помог спасти жизни многих солдат. К сожалению, длительное воздействие радиации привело к апластической анемии, от которой Кюри и умерла в 1934 году.

Никола Тесла (1856-1943)

Никола Тесла, сербский американец, наиболее известный своей работой в области современной системы электроснабжения и исследований переменного тока. Тесла на начальном этапе работал у Томаса Эдисона — разрабатывал двигатели и генераторы, но позже уволился. В 1887 он построил асинхронный двигатель. Эксперименты Теслы дали начало изобретению радиосвязи, а особый характер Теслы дал ему прозвище «сумасшедшего ученого». В честь этого величайшего ученого, в 1960 году единицу измерения индукции магнитного поля назвали "теслой".

Нильс Бор (1885-1962)

Датскому физику Нильсу Бору присудили Нобелевскую премию в 1922, за его работу над квантовой теорией и строением атома. Бор известен открытием модели атома. В честь этого величайшего ученого даже назвали элемент ‘Бориум’, ранее известный, как "гафний". Бор также сыграл важную роль в основании CERN — Европейской организации по ядерным исследованиям.

Галилео Галилей (1564-1642)

Галилео Галилей наиболее известен своими достижениями в астрономии. Итальянский физик, астроном, математик и философ, он улучшил телескоп и сделал важные астрономические наблюдения, среди которых подтверждение фаз Венеры и открытие спутников Юпитера. Неистовая поддержка гелиоцентризма стала причиной преследований ученого, Галилея даже подвергли домашнему аресту. В это время он написал ‘Две Новые Науки’, благодаря которым был назван “Отцом современной Физики”.

Аристотель (384-322 до н.э.)

Аристотель — греческим философом, который является первым настоящим ученым в истории. Его взгляды и идеи влияли на ученых и в более поздние года. Он был учеником Платона и учителем Александра Великого. Его работа охватывает широкое разнообразие предметов — физика, метафизика, этика, биология, зоология. Его взгляды на естественные науки и физику были инновационными и стали базой для дальнейшего развития человечества.

Дмитрий Иванович Менделеев (1834 — 1907)

Дмитрия Ивановича Менделеева можно смело назвать одним из самых величайших ученых в истории человечества. Он открыл один из фундаментальных законов мироздания — периодический закон химических элементов, которому подчинено все мироздание. История этого удивительного человека заслуживает многих томов, а его открытия стали двигателем развития современного мира.

Благодаря открытию американских экономистов понятие "средний возраст" может навсегда уйти в прошлое. Его заменит другое, более приятное - "возраст гениальности". Именно между 30 и 40 годами люди придумывают гениальные изобретения и совершают поразительные открытия

Ученые давно пытаются понять природу гениальности. Первое исследование возраста наибольшей продуктивности было проведено еще в 1874 году, но докопаться до истины удалось только недавно.

Экономисты Бенджамин Джонс из Северо-Западного университета и Брюс Вайнберг из Университета Огайо проанализировали, на какой период жизненного цикла пришлось больше всего изобрений и открытий, удостоенных Нобелевской премии, и смогли вычислить "возраст гениальности".

Эйнштейн, ты неправ

Великий физик Альберт Энштейн однажды язвительно заметил, что "человек, который не сделал большого вклада в науку к тридцати годам, уже никогда его не сделает". Когда физик придумал специальную теорию относительности ему было всего 26 лет. Однако несмотря на собственную гениальность, в определении возраста наибольшей продуктивности Энштейн все-таки ошибся.

  • Джонс и Вайнберг исследовали данные о 544 Нобелевских лауреатах и 286 всемирно признанных изобретателях 20 века, и выяснили, что 93% нобелевских и просто значимых открытий были совершены учеными старше 26 лет.
  • Часть открытий, действительно, делаются в довольно раннем возрасте, однако, пик продуктивности приходится на период между 30 и 40 годами.
  • Средний возраст гениальности в 20 веке составляет 39 лет. После 40 вероятность сделать что-то великое резкое сокращается.
  • Даже те, кто рано расцвел, добиваются наибольших успехов в более зрелом возрасте. Тот же Энштейн внес самый большой вклад в теорию относительности в 1930-е годы, когда ему уже было больше 50 лет.
  • Николай Коперник завершил свою революционную теорию движения планет в возрасте 60 лет.
  • Самые известные произведения вундеркинда Вольфганта Амадея Моцарта были написаны им после 30.
  • А Стив Джобс, придумавший вместе с Стивом Возняком первый компьютер Apple в возрасте 21 года, додумался до самых коммерчески успешных продуктов только около 50.

Старение гениев

Если смотреть на возраст гениальности в исторической перспективе, то окажется, что с каждым столетием он увеличивается. Исаак Ньютон открыл теорию гравитации, когда ему было 23 года - для 17 века это был возраст пика научной формы.

В 20 веке средний возраст наибольшей научной результативности вырос на 6 лет и, согласно прогнозу Джонса, будет расти и дальше. Старение гениев ученые объясняют двумя главными факторами.

  • Во-первых, за последнее столетие мир пережил серьезный демографический сдвиг. Жизненный цикл человека изменился, и распределение возраста научных открытий отражает эту динамику.
  • Во-вторых, объем знаний, которыми необходимо овладеть ученому, чтобы совершить открытие, драматически вырос.
  • В качестве иллюстрации эффекта, который Джонс и Вайнберг называют теорией "груза знаний", экономисты приводят простой пример.
  • В 17 веке Джон Гарвард, чьим именем назван сегодня лучший университет планеты, обладал одной из самых обширных научных библиотек своего времени, она состояла из 320 томов. Сегодня в библиотеке Конгресса США хранится 35 миллионов книг.
  • Количество новых теорий с каждым годом растет как снежный ком, в 2012 году в научных журналах было опубликовано более двух миллионов исследований.

Физики созревают раньше биологов


В каждой дисциплине есть свой "возраст гениальности". В точных науках он меньше, чем в естественных. Среди американцев, получивших Нобелевскую премию до 1972 года, средний "возраст гениальности" у физиков составил 36 лет, у химиков - 39 лет, а у физиологов - 41 год.