Что такое мощность переменного электрического тока. Активная и реактивная мощность

Переменный ток несёт энергию. Поэтому крайне важным является вопрос о мощности в цепи переменного тока.

Пусть U и I мгновенные значение напряжения и силы тока на данном участке цепи. Возьмём малый интервал времени dt настолько малый, что напряжение и ток не успеют за это время сколько-нибудь измениться; иными словами, величины U и I можно считать постоянными в течение интервала dt.

Пусть за время dt через наш участок прошёл заряд dq = Idt (в соответствии с правилом выбора знака для силы тока заряд dq считается положительным, если он переносится в положительном направлении, и отрицательным в противном случае). Электрическое поле движущихся зарядов совершило при этом работу

dA = Udq = UIdt:

Мощность тока P это отношение работы электрического поля ко времени, за которое эта

работа совершена:

Точно такую же формулу мы получили в своё время для постоянного тока. Но в данном случае мощность зависит от времени, совершая колебания вместе током и напряжением; поэтому величина (118 ) называется ещё мгновенной мощностью.

Из-за наличия сдвига фаз сила тока и напряжение на участке не обязаны совпадать по знаку (например, может случиться так, что напряжение положительно, а сила тока отрицательна, или наоборот). Соответственно, мощность может быть как положительной, так и отрицательной. Рассмотрим чуть подробнее оба этих случая.

1. Мощность положительна: P > 0. Напряжение и сила тока имеют одинаковые знаки. Это означает, что направление тока совпадает с направлением электрического поля зарядов, образующих ток. В таком случае энергия участка возрастает: она поступает на данный участок из внешней цепи (например, конденсатор заряжается).

2. Мощность отрицательна: P < 0. Напряжение и сила тока имеют разные знаки. Стало быть, ток течёт против поля движущихся зарядов, образующих этот самый ток.

Как такое может случиться? Очень просто: электрическое поле, возникающее на участке, как бы ¾перевешивает¿ поле движущихся зарядов и ¾продавливает¿ ток против этого поля. В таком случае энергия участка убывает: участок отдаёт энергию во внешнюю цепь (например, конденсатор разряжается).

Если вы не вполне поняли, о чём только что шла речь, не переживайте дальше будут конкретные примеры, на которых вы всё и увидите.

24.1 Мощность тока через резистор

Пусть переменный ток I = I0 sin !t протекает через резистор сопротивлением R. Напряжение на резисторе, как нам известно, колеблется в фазе с током:

U = IR = I0 R sin !t = U0 sin !t:

Поэтому для мгновенной мощности получаем:

P = UI = U0 I0 sin2 !t;

Максимальное значение P0 нашей мощности связано с амплитудами тока и напряжения

привычными формулами:

U 2P 0 = U 0 I 0 = I 0 2 R = R 0 :

На практике, однако, интерес представляет не максимальная, а средняя мощность тока. Это и понятно. Возьмите, например, обычную лампочку, которая горит у вас дома. По ней течёт ток частотой 50 Гц, т. е. за секунду совершается 50 колебаний силы тока и напряжения. Ясно, что за достаточно продолжительное время на лампочке выделяется некоторая средняя мощность, значение которой находится где-то между 0 и P0 . Где же именно?

Посмотрите ещё раз внимательно на рис. 1. Не возникает ли у вас интуитивное ощущение, что средняя мощность соответствует ¾середине¿ нашей синусоиды и принимает поэтому значение P0 =2?

Это ощущение совершенно верное! Так оно и есть. Разумеется, можно дать математически строгое определение среднего значения функции (в виде некоторого интеграла) и подтвердить нашу догадку прямым вычислением, но нам это не нужно. Достаточно интуитивного понимания простого и важного факта:

среднее значение квадрата синуса (или косинуса) за период равно 1/2:

Этот факт иллюстрируется рисунком 122 .

y = sin2 x

Рис. 122. Среднее значение квадрата синуса равно 1/2

Итак, для среднего значения P мощности тока на резисторе имеем:

U0 I0

I0 2 R

U0 2

В связи с этими формулами вводятся так называемые действующие (или эффективные) значения напряжения и силы тока47 :

U = p

I = p

Формулы (120 ), записанные через действующие значения, полностью аналогичны соответствующим формулам для постоянного тока:

P = U I = I2 R =U 2 :

Поэтому если вы возьмёте лампочку, подключите её сначала к источнику постоянного напряжения U, а затем к источнику переменного напряжения с таким же действующим значением U, то в обоих случаях лампочка будет гореть одинаково ярко.

Действующие значения (121 ) чрезвычайно важны для практики. Оказывается, вольтметры и амперметры переменного тока показывают именно действующие значения (так уж они устроены). Знайте также, что пресловутые 220 вольт из розетки это действующее значение напряжения бытовой электросети.

24.2 Мощность тока через конденсатор

Пусть на конденсатор подано переменное напряжение U = U0 sin !t. Как мы знаем, ток через конденсатор опережает по фазе напряжение на =2:

I = I0 sin !t +

I0 cos !t:

Для мгновенной мощности получаем:

P = UI = U0 I0 sin !t cos !t =

U0 I0 sin 2!t;

P = P0 sin 2!t:

Здесь введено обозначение P0 = U0 I0 =2. График зависимости (122 ) мгновенной мощности от времени представлен на рис.123 .

Рассмотрим последовательно все четыре четверти периода.

1. Первая четверть, 0 < t < T=4. Напряжение положительно и возрастает. Ток положителен (течёт в положительном направлении), конденсатор заряжается. По мере увеличения заряда на конденсаторе сила тока убывает.

Мгновенная мощность положительна: конденсатор накапливает энергию, поступающую из внешней цепи. Эта энергия возникает за счёт работы внешнего электрического поля, продвигающего заряды на конденсатор.

2. Вторая четверть, T=4 < t < T=2. Напряжение продолжает оставаться положительным, но идёт на убыль. Ток меняет направление и становится отрицательным: конденсатор разряжается против направления внешнего электрического поля. В конце второй четверти конденсатор полностью разряжен.

Мгновенная мощность отрицательна: конденсатор отдаёт энергию. Эта энергия возвращается в цепь: она идёт на совершение работы против электрического поля внешней цепи (конденсатор как бы ¾продавливает¿ заряды в направлении, противоположном тому, в котором внешнее поле ¾хочет¿ их двигать).

3. Третья четверть, T=2 < t < 3T=4. Внешнее электрическое поле меняет направление: напряжение отрицательно и возрастает по модулю. Сила тока отрицательна: идёт зарядка конденсатора в отрицательном направлении.

Ситуация полностью аналогична первой четверти, только знаки напряжения и тока противоположные. Мощность положительна: конденсатор вновь накапливает энергию.

4. Четвёртая четверть, 3T=4 < t < T . Напряжение отрицательно и убывает по модулю. Конденсатор разряжается против внешнего поля: сила тока положительна.

Мощность отрицательна: конденсатор возвращает энергию в цепь. Ситуация аналогична второй четверти опять-таки с заменой заменой знаков тока и напряжения на противоположные.

Мы видим, что энергия, забранная конденсатором из внешней цепи в ходе первой четверти периода колебаний, полностью возвращается в цепь в ходе второй четверти. Затем этот процесс повторяется вновь и вновь. Вот почему средняя мощность, потребляемая конденсатором, оказывается равной нулю.

21 сентября 2017

В свое время Эдисон и Тесла были противниками в вопросе использования электрического тока в энергетике. Тесла считал, что необходимо использовать переменный ток, а Эдисон - что нужно применять постоянный ток. У второго ученого было больше возможностей, так как он занимался , однако Тесла в конечном итоге удалось победить, так как он был попросту прав.

Вступление

Переменный ток значительно эффективнее использовать для передачи энергии. Обсудим, как вычисляется мощность переменного тока, ведь переменный ток - это мощность, которая передается на расстоянии.

Вычисление мощности

Допустим, у нас имеется генератор переменного напряжения, который подключен к нагрузке. На выходе генератора, между двумя точками на клеммах, напряжение меняется по гармоническому , а нагрузка взята произвольная: катушки, активное сопротивление, конденсаторы, электромотор.

В цепи нагрузки течет ток, который меняется по гармоническому закону. Наша задача - установить, чему равна мощность потребляемой нагрузки от генератора. В распоряжении имеем генератор. В качестве исходных данных представлено направление на входе, которое будет меняться по гармоничному правилу:

Сила тока в нагрузке и, соответственно, в проводах, которые подводят мощность к нагрузке, будет меняться. Частота колебаний тока выйдет такая же, как частота колебаний напряжения, но существует также понятие сдвига фазы в промежутках колебаний тока и напряжения:

(I (t) = I (m) cos w t)

Дальнейшие вычисления

Показатели мощность будут равны произведению:

P (t) = I (t) U (t)

Этот закон остаётся справедливым как для переменного тока с мощностью, которую необходимо было вычислить, так и для постоянного.

(I (t) = I (m) cos (wt + J)

Мощность переменного тока при переменном токе вычисляется при помощи трех формул. Представленные выше расчеты относятся к основной формуле, которая вытекает из определения силы тока и напряжения.

Если участок цепи однородный и можно пользоваться законом Ома для этого участка цепи, здесь такие вычисления использовать нельзя, так как нам неизвестен характер нагрузки.

Определяем результат

Подставим показатели силы тока и напряжения в данную формулу, и тут нам на помощь придет знание тригонометрических формул:

cosa cosb = cos(a +b) + cos(a - b) / 2

Воспользуемся этой формулой и получим вычисления:

P(t) = I(m) U (m) cos (wt + J) cos wt

После упрощения результатов получим:

P(t) = I(m) U (m)/2 cos (wt + J) + I(m) U (m) cosJ

Посмотрим на эту формулу. Здесь первое слагаемое зависит от времени, меняясь по гармоническому закону, а второе является величиной постоянной. Мощность переменного тока при переменном токе складывается из постоянной и переменной составляющей.

Если мощность положительна, значит, нагрузка потребляет энергию от генератора. При отрицательной мощности, наоборот, нагрузка раскручивает генератор.

Найдем среднее значение мощности за период времени. Для этого работу, совершенную электрическим током, поделим на величину этого периода.

Мощность трехфазной цепи переменного тока- это сумма переменной и постоянной составляющих.

Активная и реактивная мощность

Многие физические процессы можно представить аналогиями друг друга. На этой базе постараемся раскрыть суть понятий активной мощности цепи переменного тока и реактивной мощности цепи переменного тока.

Стакан представляет собой электростанцию, вода - электроэнергию, трубочка - кабель или провод. Чем выше поднимается стакан, тем больше напряжение или давление.


Параметры мощности в сети переменного тока активного или реактивного типа зависят от тех элементов, которые потребляют такую энергию. Активная - энергия индуктивности и ёмкости.

Покажем это на конденсаторе, ёмкости и стакане. Активными называются те элементы, которые способны преобразовывать энергию в другой вид. К примеру, в тепло (утюг), свет (лампочка), движение (мотор).


Реактивная энергия

При имитации реактивной энергии напряжение увеличивается, и ёмкость заполняется. При уменьшении напряжения накопленная энергия возвращается по проводу обратно в электростанцию. Так повторяется циклически.

Сам смысл реактивных элементов заключается в накоплении энергии, которая потом обратно возвращается или используется для других функций. Но никуда не тратится. Основной минус этой производной в том, что виртуальный трубопровод, по которому как-бы идет энергия, имеет сопротивление, и на нем тратится процент экономии.

Полной мощности цепи переменного тока требуются затраты определенного процента усилий. По этой причине на крупных предприятиях идет борьба с реактивной составляющей полной мощности.

Активная мощность - это та энергия, которая потребляется или преобразуется в другие виды - свет, тепло, движение, то есть в какую-либо работу.

Опыт

Для опыта возьмем стакан, которые служит активной составляющей мощности. Он представляет часть энергии, которую необходимо потребить или преобразовать в другой вид.

Часть энергии воды можно выпить. Полная мощность переменного тока коэффициент мощности - это показатель, который складывается из реактивной и активной составляющих: энергии, текущей по водопроводу и той, которая преобразуется.

Как выглядит полная мощность в нашей аналогии? Часть воды выпиваем, а оставшаяся будет продолжать бежать по трубке. Так как у нас есть реактивный ёмкостной элемент - конденсатор или ёмкость, воду опускаем и начинаем имитировать увеличение и уменьшение напряжения. При этом видно, как вода перетекает в двух направлениях. Следовательно, в этом процессе применяется и активная, и реактивная составляющая. Вместе это - полная мощность.


Пре мощности

Активная мощность преобразовывается в другой вид энергии, к примеру, в механическое движение или нагрев. Реактивная мощность, которая накапливается в реактивном элементе, позднее возвращается назад.

Полная мощность - это геометрическая сумма активной и реактивной мощности.

Для произведения вычислений используем тригонометрические функции. Физический смысл расчетов такой. Возьмем прямоугольный треугольник, в котором одна из сторон равна 90 градусов. Одна из сторон - это его гипотенуза. Есть прилежащий и противолежащий относительно прямого угла катеты.

Косинус представлен , которое предопределяет длина прилегающего катета относительно длины гипотенузы.


Синусом угла является вид отношения, которое составляет длина противолежащего катета относительно гипотенузы. Зная угол и длину любой из сторон, можно вычислить все остальные углы и длину.

В данном треугольнике можно взять длину гипотенузы и прилежащего катета и вычислить этот угол с помощью тригонометрической функции косинусов. Мощность постоянного и переменного тока вычисляется с применением таких знаний.

Для вычисления угла можно применять обратную функцию от косинуса. Получим необходимый результат вычислений. Чтобы вычислить длину противолежащего катета, можно вычислить синус и получить соотношение противолежащего катета к гипотенузе.

Вычисление мощности цепи переменного тока по формуле предложено в этом описании.

В цепях постоянного тока мощность равна произведению напряжения на ток. В цепях переменного тока также работает это правило, но его трактовка будет не совсем правильной.

Индуктивность

Помимо активных элементов, действуют реактивные элементы - индуктивность и ёмкость. В цепях постоянного тока, где амплитудное значение напряжения токов не меняется во времени, работа данного сопротивления будет происходить только во времени. Индуктивность и ёмкость могут негативным образом влиять на сеть.

Активная мощность, которую имеет трехфазная цепь переменного тока, может выполнять полезную работу, а реактивная не выполняет никакой полезной работы, а только расходуется на преодоление реактивных сопротивлений индуктивности и ёмкости.

Попытаемся выполнить опыт. Возьмем источник переменного напряжения на 220 Вт с частотой 50Гц, датчик напряжения и тока источника, нагрузка, которая составляет активное 1Ом и индуктивное 1ОМ сопротивление.

Также есть выключатель, который подключится в определенный момент, активно-ёмкостная нагрузка. Запустим такую систему. Для удобства рассмотрения введем коэффициенты поправки напряжения.

Запускаем устройство

При запуске устройства видно, что напряжение и ток сети не совпадают по фазе. Наблюдается переход через 0, при котором существует угол - коэффициент мощности сети. Чем меньше этот угол, тем выше коэффициент мощности, который указывается на всех устройствах переменного тока, к примеру, электрических или сварочных трансформаторах.

Угол зависит от величины индуктивного сопротивления нагрузки. Когда сдвиг уменьшается, увеличивается ток сети. Представим, что сопротивление катушки уменьшить нельзя, но надо улучшить косинус сети. Для этого и нужны конденсаторы, которые, в отличие от индуктивности, опережают напряжение и могут взаимно компенсировать реактивную мощность.

В момент подключения конденсаторной батареи за 0,05 с происходит резкое снижение косинуса, практически до 0. Также идет резкое снижение тока, который без конденсаторной батареи имел амплитудное значение намного ниже, чем при включении конденсаторной батареи.

Фактически подключением конденсаторной батареи удалось снизить мощность тока, потребляемого из сети. Это является положительным моментом и позволяет снижать ток сети и экономить на сечение кабелей, трансформаторах, силовом оборудовании.

Если произойдет отключение индуктивной нагрузки и останется активное сопротивление, произойдет процесс, когда косинус сети после подключения конденсаторной батареи приведет к фазовому сдвигу и большому скачку тока, который идёт в сеть, а не потребляется из неё, что происходит в генераторном режиме реактивной мощности.

Итоги

Активная мощность опять остается постоянной и равна нулю, так как нет индуктивного сопротивления. Начался процесс генерации реактивной мощности в сеть.

Следовательно, компенсировать реактивную мощность на крупных предприятий, потребляемых колоссальные её объёмы из энергосистем, - это приоритетная задача, так как это позволяет экономить не только на электрооборудовании, но и на затратах по оплате самой реактивной мощности.

Такое понятие регламентируется, и предприятие оплачивает и потребляемую, и генерируемую мощность. Здесь устанавливаются автоматические компенсаторы, обеспечивающие поддержку баланса мощности на заданном уровне.

При отключении мощной нагрузки, если не выключить из сети компенсирующее устройство, будет происходить генерация реактивной мощности в сеть, что создаст проблемы в энергосистеме.

В быту компенсация реактивной мощности не имеет смысла, так как потребление мощности здесь значительно ниже.

Активная и реактивная мощность - понятия школьного курса физики.

Источник: fb.ru

Похожие материалы

Любой человек, выбравший работу с электротехникой своей профессией, должен очень хорошо разбираться в том, какие бывают источники электропитания, каковы их особенности и отличия. На самом деле ничего сложного нет, что мы и покажем в этой статье. Трудно представить, как бы выглядел современный мир, исчезни из него электрическая энергия и сопутствующ...

В статье вы узнаете, что такое электродвигатели переменного тока, рассмотрите их устройство, принцип действия, область применения. Стоит отметить, что сегодня в промышленности более 95 процентов всех используемых двигателей приходится на асинхронные машины. Они получили большое распространение в связи с тем, что у них высокая надежность, они могут служить...

Лишь немногие способны реально осознать, что переменный и постоянный ток чем-то отличаются. Не говоря уже о том, чтобы назвать конкретные различия. Цель данной статьи - объяснить основные характеристики этих физических величин в терминах, понятных людям без багажа технических знаний, а также предоставить некоторые базовые понятия, касающиеся данного...

Перед тем как приступить к производству продукции, любая компания должна иметь представление о том, какой доход она получит в результате реализации выпущенного товара. Для этого необходимо изучение потребительского спроса, разработка ценовой политики и сравнение предполагаемой выручки с величиной предстоящих расходов. Издержки производства пр...

Производство это такая деятельность человека, в результате которой он удовлетворяет свои материальные потребности. Поскольку природа не может предоставлять ему все необходимые блага в нужном количестве, он вынужден их производить. Из этого можно сделать вывод, что производство - это объективная необходимость. Потребности человека делятся на духовные...

Электрический ток является основным видом энергии, совершающим полезную работу во всех сферах человеческой жизни. Он приводит в движение разные механизмы, дает свет, обогревает дома и оживляет целое множество устройств, которые обеспечивают наше комфортное существование на планете. Поистине, этот вид энергии универсален. Из нее можно получить все что угод...

Электрические разъемы - это контактные элементы, с легкостью разъединяемые или соединяемые между собой без проведения специальных действий. Они могут быть однофазного и трехфазного типа. Предел использования последних составляет 380 вольт, в то время как однофазные могут применяться при напряжении не более 250 вольт. Штепсельная розетка выступает на...

Современные компьютерные технологии, информатика, мощность алфавита, системы исчисления и многие другие понятия имеют самые непосредственные связи между собой. Очень немногие пользователи сегодня достаточно хорошо разбираются в этих вопросах. Попробуем прояснить, что такое мощность алфавита, как ее вычислять и применять на практике. В дальнейшем это, вне...

Мощность в физике понимается как отношение совершаемой за определенное время работы к тому промежутку времени, за который она выполняется. Под механической работой подразумевается количественная составляющая воздействия силы на тело, из-за чего последнее перемещается в пространстве.Можно выразить мощность и как скорость передачи энергии. То есть он...

Что такое сила и мощность? В чем измеряется данный показатель, какие при этом используются приборы, и как названные физические величины применяются на практике, мы рассмотрим далее в статье.СилаВ м...

Энергия, поставляемая источником электродвижущей силы во внешнюю цепь, испытывает превращения в другие виды энергии. Если в цепи имеется только активное сопротивление, то вся энергия превращается в тепло, выделяемое на сопротивлении . Между током и напряжением сдвиг фаз отсутствует. Кроме того, в течение малого промежутка времени переменный ток можно рассматривать как постоянный. Поэтому мгновенная мощность, развиваемая переменным током на сопротивлении:

Хотя ток и напряжение бывают как положительными, так и отрицательными, мощность, равная их произведению, всегда положительна. Однако она пульсирует, изменяясь от нуля до максимального значения с частотой, равной удвоенной частоте переменного тока. На рис. 7.12 показана временная зависимость тока, напряжения и мощности переменного тока, выделяемой на активном сопротивлении. Ясно, что средняя передаваемая мощность меньше максимальной и равна половине максимальной мощности. Среднее значение и за период равно . Это можно объяснить следующим образом: , а за полный цикл среднее значение равно среднему значению . Поэтому среднее значение мощности будет равно

Коэффицие́нт мо́щности - безразмерная физическая величина, характеризующая потребителя переменного электрического тока с точки зрения наличия в нагрузке реактивной составляющей. Коэффициент мощности показывает, насколько сдвигается по фазе переменный ток, протекающий через нагрузку, относительно приложенного к ней напряжения.

Численно коэффициент мощности равен косинусу этого фазового сдвига.

Как известно, потребляемая от источника переменного тока энергия складывается из двух составляющих:

1. Активной энергии

2. Реактивной энергии

1. Активная энергия целиком и безвозвратно преобразуется приемником в другие виды энергии .
Пример: Протекая через резистор, ток совершает активную работу, что выражается в увеличении тепловой энергии резистора. Вне зависимости от фазы протекающего тока, резистор преобразует его энергию в тепловую. Резистору не важно в каком направлении течет по нему ток, важна лишь его величина: чем он больше, тем больше тепла высвободится на резисторе (количество выделенного тепла равно произведению квадрата тока и сопротивления резистора ).

Реактивная энергия - та часть потребляемой энергии, которая в следующую четверть периода будет целиком отдана обратно источнику

РЕЗОНАНС НАПРЯЖЕНИЙ

Известно, что в механической системе резонанс наступает при равенстве собственной частоты колебаний системы и частоты колебаний возмущающей силы, действующей на систему. Колебания механической системы, например колебания маятника, сопровождаются периодическим переходом кинетической энергии в потенциальную и наоборот. При резонансе механической системы малые возмущающие силы могут вызывать большие колебания системы, например большую амплитуду колебаний маятника.
В цепях переменного тока, где есть индуктивность и емкость, могут возникнуть явления резонанса, которые аналогичны явлению резонанса в механической системе. Полная аналогия – равенство собственной частоты колебаний электрического контура частоте возмущающей силы (частоте напряжения сети) – возможна не во всех случаях.
В общем случае под резонансом электрической цепи понимают такое состояние цепи, когда ток и напряжение совпадают по фазе, и, следовательно, эквивалентная схема цепи имеет место при определенном соотношении ее параметров r , L , C , когда резонансная частота цепи равна частоте приложенного к ней напряжения.
Резонанс в электрической цепи сопровождается периодическим переходом энергии электрического поля емкости в энергию магнитного поля и наоборот.
При резонансе в электрической цепи малые напряжения, приложенные к цепи, могут вызвать значительные токи и напряжения на отдельных участках. В цепи, где r , L , C соединены последовательно, может возникнуть резонанс напряжений, а в цепи, где r , L , C соединены параллельно, – резонанс токов .
Резона́нс - явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при совпадении частоты собственных колебаний с частотой колебаний вынуждающей силы

резонансную частоту можно найти из выражения

,

где ; f - резонансная частота в герцах; L - индуктивность в генри; C - ёмкость в фарадах.

16. 1. Работа тока

Электрический ток, конечно же, не стал бы так широко использоваться, если бы не одно обстоятельство. Работу тока или же электроэнергию легко преобразовывать в любую нужную нам энергию или работу: тепловую, механическую, магнитную…

Для практического применения тока прежде всего хочется знать, какую работу можно обратить в свою пользу. Выведем формулу для определения работы тока:

Так как все величины, входящие в формулу, можно измерить соответствующими приборами (амперметр, вольтметр, часы), формула является универсальной.

Формулу можно также записать в несколько ином виде, используя закон Ома:

Если в исходную формулу для работы тока подставить силу тока, записанную таким образом, то получим:

Если же из закона Ома выразить напряжение, то тогда:

Использование этих формул удобно, когда в цепи присутствует какое-то одно соединение: параллельное для первого случая и последовательное для второго

Details 26 February 2017

Господа, всех вас в очередной раз приветствую! В сегодняшней статье я бы хотел поднять темы, касающиеся мощности и энергии (работы) в цепях переменного тока . Сегодня мы узнаем, что это такое и научимся их определять. Итак, погнали.

Прежде чем начать что-либо обсуждать про переменный ток, давайте-ка вспомним, как мы определяли мощность в случае постоянного тока . Да-да, у нас была отдельная статейка на эту тему, помните? Если нет, то напоминаю, что в случае постоянного тока мощность в цепи считается очень просто, по одной из этих трех замечательных формул:

где P - искомая мощность, которая выделяется на резисторе R;

I - сила тока в цепи через резистор R;

U - напряжение на резисторе R.

Это все здорово. Но как быть в случае переменного тока , а в частности - синусоидального? Ведь там у нас колбасится синус, значения тока и напряжения все время меняются, сейчас они одни, через мгновение - уже другие, т.е., выражаясь научным языком, они являются функциями времени. Пользуясь знаниями, полученными нами в предыдущей вводной статье , мы можем записать вот такой закон изменения силы тока:

Мы не будем сейчас повторять что здесь есть что, все это было досконально рассмотрено в прошлый раз .

Абсолютно аналогично можно записать зависимость напряжения от времени для переменного синусоидального тока

Пока что считаем, что у нас в цепи только резисторы (конденсаторы и индуктивности отсутствуют), следовательно, напряжение и ток совпадают по фазе между собой. Не понятно почему так? Ничего, в будущем разберем это подробно. Пока же для нас это значит только то, что фазы как в законе изменения тока, так и в законе изменения напряжения можно выкинуть.

И вот глядя на эти три строчки с формул и сопоставляя их между собой, не приходит ли вам на ум какая-либо идея? Например, что можно бы подставить ток или напряжение в формулу для мощности... Такая идея пришла? Это просто замечательно! Давайте ее сейчас же реализуем! Поскольку у нас и ток, и напряжения зависят от времени, все три полученные новые формула для мощности абсолютно также будет зависеть от времени.



Ох, прям в глазах рябит от синусов . Но ведь все довольно просто и очевидно откуда, что получилось, не так ли? По вот этим вот самым формулам можно рассчитать мгновенную мощность в определенный момент времени. Фишка в том, что если через резистор течет переменный ток, то в каждое мгновение времени на нем будет выделяться вообще говоря разная мощность : иначе и быть не может, раз амплитуда тока через резистор все время разная. Другое дело, что визуально, при большой частоте изменения тока, мы скорее всего это не заметим: температура резистора не будет хаотично скакать в такт изменения мощности, которая на нем выделяется. Это будет потому, что сам резистор благодаря его массе и теплоемкости синтегрирует эти перепады температуры.

Итак, с мощностью более-менее понятно. А как быть с энергией? Ну, то есть с теплом, которое выделяется на резисторе? Как оценить эту самую энергию? Для этого нам надо вспомнить, как же связаны между собой мощность и энергия. Мы уже затрагивали эту тему в статье про мощность в цепи постоянного тока . Тогда этот вопрос решился просто: при постоянном токе достаточно умножить мощность (которая там не зависит от времени и все время одинакова) на время наблюдения и получить выделяющуюся за это самое время наблюдения энергию. С переменным током все посложнее, потому что тут мощность зависит от времени. И, увы, тут не обойтись без интегралов… Что это вообще такое этот самый интеграл? Как, вероятно, многие из вас знают, интеграл - это просто площадь под графиком . В данном конкретном случае под графиком зависимости мощности от времени P(t) . Да, вот так вот все просто.

Итак, энергия (или работа, что по сути одно и то же) в цепи переменного тока считается следующим образом

В этой формуле Q - это искомая работа (энергия) переменного тока (измеряется все так же в джоулях), P(t) - закон изменения мощности от времени, а Т - собственно, сам отрезок времени, который мы рассматриваем, и в течении которого ток работает.

Вообще говоря, это выражение можно рассматривать как общий случай и для постоянного тока, и для переменного (при этом переменный ток может быть любой формы, не обязательно синусоидальный). Во всех эих случаях можно считать энергию через вот этот вот интеграл. Если же мы подставим сюда P(t)=const (случай постоянного тока), то исходя из особенности взятия интеграла от константы результат расчета будет абсолютно таким же, как если бы мы просто умножили мощность на время, поэтому нет никакого смысла так заморачиваться и рассматривать интегралы в теме постоянного тока. Но полезно это знать, что бы была некая единая картина. Сейчас же, господа, я прошу вас запомнить главный вывод из всей этой болтовни - если мы хотим найти выделившуюся энергия за время T (без разницы какой ток - постоянный или переменный), то это можно сделать, найдя площадь под графиком зависимости мощности от времени на интервале от 0 до Т.

Если брать токи синусоидальные и подставлять конкретные выражения для зависимости мощности от времени, то энергию можно посчитать по одной из следующих формул



Господа, скажу сразу, в своих статьях я не буду рассказывать, как брать интегралы. Я надеюсь, что вы это знаете. А если нет - ничего страшного, не спешите закрывать статью. Я буду стараться строить изложение таким образом, чтобы незнание интегралов не привело в вашем сознании к fatal error . Очень часто их вообще не требуется считать ручками, а можно посчитать в специализированных программах или даже онлайн на многочисленных сайтах.

Давайте теперь разберем все вышесказанное на конкретном примере. Господа, специально для вас я подготовил рисуночек 1. Взгляните на него. Изображение кликабельно.



Рисунок 1 - Зависимость мощности от времени для переменного и постоянного тока

Там два графика: на верхнем показана зависимость мощности от времени для случая переменного синусоидального тока, а на нижнем - для случая постоянного тока. Как я их построил? Очень просто. Для первого графика я взял вот эту ранее написанную нами формулу.

Будем полагать, что амплитуда синусоидального тока равна I m =1 A , сопротивление резистора, на котором рассеивается мощность, равно R=5 Ом , а частота синуса равна f = 1 Гц , что соответствует круговой частоте

То есть формула, по которой мы строим график мощности переменного тока, имеет вид

Именно по этой формуле построен верхний график на рисунке 1.

А как быть с нижним графиком? Господа, ну тут совсем все просто. Я исходил из того, что через тот же самый резистор R=5 Ом течет постоянный ток величиной I=1 А . Тогда, как должно быть понятно из закона Джоуля-Ленца , на данном резисторе будет рассеиваться вот такая вот мощность

Поскольку ток постоянный, то эта мощность будет одинаковой в любой момент времени. А для таких замечательнейших случаев эталонной стабильности великая и могучая математика предусматривает график в виде прямой. Что мы и видим на нижнем графике рисунка 1.

Понятное дело, что раз через наши пятиомные резисторы течет ток, то на них выделяется некоторая мощность и рассеивается некоторое количество энергии. Иными словами, резистор греется за счет выделяющейся на нем энергии. Мы уже обсуждали, что эта энергия считается через интеграл. Но, как мы уже говорили, есть и графическое представление этого интеграла - он равен площади под графиком. Эту площадь я заштриховал на рисунке 1. То есть, если мы найдем, чему равна площадь под верхним и нижним графиками, то мы определим, какое количество энергии выделилось в первом и втором случае.

Ну, с нижним графиком вообще все просто. Там - прямоугольник высотой 5 Вт и шириной 2 секунды. Поэтому площадь (то бишь энергия) находится элементарно

Отметим, что этот результат в точности совпадает с формулой, полученной нам для расчета энергии постоянного тока в одной из прошлых статей .

Со верхним графиком все не так просто. Там у нас неправильная форма и просто так сразу нельзя сказать, чему равна эта площадь. Вернее, сказать можно - она равна вот такому вот интегралу



Результат вычисления этого интеграла равен конкретному числу и это число - как раз наша искомая энергия, которая выделилась на резисторе. Мы не будем расписывать взятие этого интеграла. Посчитать такой интеграл ручками не составит труда для человека, хотя бы поверхностного знакомого с математикой. Если же все-таки это вызывает затруднение, или просто лень самому считать - есть огромное количество САПРа, которое сделает это за вас. Либо можно посчитать этот интеграл на каком-либо сайте: по запросу в гугле «интегралы онлайн» выдается достаточное количество результатов. Итак, сразу переходим к ответу и он равен

Вот так вот. Энергия, которая выделяется на резисторе при протекании синусоидального тока с амплитудой 1 А почти в два раза меньше энергии, которая будет выделяться в случае, если течет постоянный ток величиной 1 А. Оно и понятно - даже визуально на рисунке 1 площадь под верхним графиком заметно ниже, чем под нижним.

Как-то так, господа. Теперь вы знаете, как рассчитать мощность и энергию в цепи переменного тока. Однако сегодня мы рассмотрели довольно сложный путь. Оказывается, есть методы попроще, с использованием так называемых действующих величин тока и напряжения. Но об этом в следующей статье.

А пока что - всем вам огромной удачи, спасибо, что прочитали, и пока!

Вступайте в нашу

Как мы видели, в цепи синусоидального переменного тока, вообще говоря, возникает сдвиг по фазе между приложенным напряжением и током:

Мгновенная мощность. Сдвиг фаз зависит от соотношения между активным и реактивными сопротивлениями и тем самым от частоты Поскольку напряжение и ток в цепи изменяются с частотой , то при подсчете работы тока нужно рассматривать настолько малый промежуток времени чтобы значения напряжения и тока можно было считать постоянными:

Отсюда получается следующее выражение для мгновенной мощности тока:

Подставив сюда значения из (1), получаем

Воспользовавшись тригонометрическим тождеством

перепишем (4) в следующем виде:

Выражение для мгновенной мощности (5) состоит из двух слагаемых: одно из них не зависит от времени, а второе осциллирует с удвоенной частотой Это значит, что дважды за каждый период изменения приложенного напряжения изменяется направление потока энергии: в течение какой-то части периода энергия поступает в цепь от источника переменного напряжения, а в течение другой части возвращается обратно. Средний за период поток энергии положителен, т. е. энергия поступает в цепь от источника.

Средняя мощность. Действующие значения. Если интересоваться работой переменного тока за промежуток времени, сравнимый с периодом то в выражении (15) для мощности следует учитывать оба слагаемых. При вычислении работы, совершаемой током за промежуток времени, значительно превышающий период, вклад второго слагаемого будет пренебрежимо малым. В этом случае вместо (5) можно пользоваться выражением для средней мощности Р:

Часто эту формулу записывают в виде

где I и - так называемые действующие значения силы тока и напряжения, в раз меньшие соответствующих амплитудных значений:

Использование действующих значений вместо амплитудных удобно потому, что в нагрузке с чисто активным сопротивлением, где выражение (7) для мощности будет таким же, как и для постоянного тока.

Потери в линиях передачи. Потребителю обычно подается напряжение определенной величины поэтому одна и та же мощность Р будет потребляться при разных значениях тока в цепи I в зависимости от сдвига фазы между током и напряжением. При

малых значениях ток должен быть большим, что приводит к большим тепловым потерям в подводящих проводах линии передачи.

Если - сопротивление линии передачи, то рассеиваемая мощность тепловых потерь в линии равна . Выражая ток в цепи с помощью (7), для получаем

Для уменьшения потерь следует добиваться как можно меньшего сдвига фазы между током и напряжением в нагрузке.

Большинство современных потребителей электрической энергии синусоидального тока представляют собой нагрузки индуктивного характера, токи в которых отстают по фазе от напряжения источника питания. Эквивалентную схему такого потребителя можно изобразить в виде последовательно соединенных активного сопротивления и индуктивности (рис. 143а). Соответствующая векторная диаграмма показана на рис. 144а. Ток через нагрузку отстает от приложенного напряжения на определенный угол Потребляемая нагрузкой мощность согласно (7) равна

Рис. 143. Эквивалентная схема потребителя с индуктивной нагрузкой (а) и включение вспомогательного конденсатора для увеличения


Рис. 144. Векторные диаграммы для цепей, изображенных на рис. 143

Из этой формулы видно, что при напряжении такую же мощность можно было бы получить и при любом другом токе таком, что изображающий его вектор (показанный штриховой линией на рис. 144а) оканчивается на перпендикуляре опущенном из конца на направление так как при этом Но если то и при той же мощности тепловые потери в подводящих проводах будут меньше.

Уменьшение потерь. Как же добиться того, чтобы сдвиг фаз между напряжением и током в цепи уменьшился? Легко сообразить, что для этого можно подсоединить параллельно нагрузке вспомогательный конденсатор (рис. 1436). Векторная диаграмма в этом случае будет иметь вид, изображенный на рис. 144б. Векторы, изображающие приложенное напряжение и ток через нагрузку останутся неизменными, а полный ток в неразветвленной цепи, равный сумме токов через нагрузку и вспомогательный конденсатор, будет изображаться вектором Подбирая емкость конденсатора, можно добиться того, чтобы сдвиг по фазе принял заданное значение 9.

Из рис. 1446 видно, что длина вектора равна

Но и с помощью (10) находим Амплитудное значение тока в конденсаторе связано с амплитудным значением подаваемого напряжения формулой Подставляя в (11), находим

Таким образом, существует достаточно простой и эффективный способ снижения потерь в линиях передачи энергии переменного тока, связанных с реактивным характером сопротивления нагрузки: подключение конденсатора к индуктивной нагрузке позволяет получить равное нулю значение сдвига фаз 9.

Высоковольтные линии передачи. Но даже в том случае, когда сопротивление нагрузки является чисто активным и сдвиг фаз между напряжением и током отсутствует, т. е. тепловые потери в линии передачи все равно неизбежны. Можно ли их каким-либо способом уменьшить? Ответ на этот вопрос дает формула (9). Из нее видно, что при заданном значении передаваемой потребителю мощности Р уменьшить тепловые потери в линии можно, либо уменьшая сопротивление проводов линии передачи, либо повышая напряжение переменного тока, подаваемого потребителю. Уменьшение сопротивления линии в настоящее время возможно лишь до известных пределов, поэтому до создания эффективных сверхпроводящих линий электропередачи с потерями приходится бороться повышением напряжения.

Трансформатор. Для преобразования напряжения на электростанциях и у потребителей используются трансформаторы (рис. 145). Трансформатор имеет сердечник замкнутой формы из магнитомягкого (легко перемагничиваемого) материала, который несет на себе две обмотки: первичную и вторичную. Концы первичной обмотки (вход трансформатора) подключают к сети

переменного тока, а концы вторичной обмотки (выход) - к потребителю электрической энергии. ЭДС электромагнитной индукции, возникающая во вторичной обмотке, пропорциональна числу витков в ней.


Рис. 145. Трансформатор: общий вид, схематическое устройство и условное изображение на схемах

Поэтому, изменяя это число витков, можно изменять в широких пределах напряжение на выходе трансформатора.

Рассмотрим принцип действия трансформатора. Пусть сначала вторичная обмотка трансформатора разомкнута, а на первичную подается переменное синусоидальное напряжение. Это режим холостого хода. Как и всякую катушку индуктивности, первичную обмотку трансформатора можно рассматривать как последовательно соединенные индуктивность и активное сопротивление Напряжение на индуктивном сопротивлении первичной обмотки опережает по фазе ток и, следовательно, напряжение на ее активном сопротивлении на угол, равный Поэтому амплитудные значения поданного на первичную обмотку напряжения и напряжений на и связаны соотношением

Разумеется, непосредственно измерить и по отдельности невозможно, так как первичная обмотка, строго говоря, не есть последовательно соединенные индуктивность и активное сопротивление каждый элемент обмотки обладает одновременно индуктивностью и сопротивлением. Это так называемая цепь с распределенными параметрами. Но при расчете можно заменить реальную обмотку на цепь с сосредоточенными параметрами - катушку индуктивности и резистор, соединенные последовательно, поскольку через каждый элемент исходной цепи идет один и тот же ток.

Напряжение на индуктивности в каждый момент времени компенсирует возникающую в первичной обмотке ЭДС самоиндукции поэтому

Если весь магнитный поток, создаваемый током первичной обмотки, целиком, т. е. без рассеяния, пронизывает вторичную

обмотку, то индуцируемая в каждом витке вторичной обмотки ЭДС будет такой же, как и в каждом витке первичной обмотки. Поэтому отношение электродвижущих сил в первичной и вторичной обмотках равно отношению чисел витков:

На выходе разомкнутой вторичной обмотки существует напряжение, равное индуцируемой в ней ЭДС:

Подставляя сюда из (15) и учитывая (14), получаем

Режим холостого хода. Таким образом, значение напряжения на разомкнутой вторичной обмотке трансформатора пропорционально не подаваемому на первичную обмотку напряжению а лишь напряжению на индуктивном сопротивлении первичной обмотки Отсюда сразу становится ясна роль сердечника трансформатора. В самом деле, из формулы (13) следует, что напряжение на индуктивности будет тем ближе к подаваемому на вход трансформатора напряжению чем больше будет индуктивное сопротивление первичной обмотки по сравнению с ее активным сопротивлением Наличие сердечника из материала с высокой магнитной проницаемостью приводит к многократному увеличению индуктивности . У такого трансформатора на холостом ходу Знак минус означает, что эти напряжения находятся в противофазе. Благодаря большому индуктивному сопротивлению первичной обмотки ток в ней при разомкнутой вторичной цепи мал.

Трансформатор под нагрузкой. При замыкании вторичной цепи трансформатора на некоторую нагрузку во вторичной обмотке появляется ток. Создаваемый этим током магнитный поток направлен так, что, согласно закону Ленца, препятствует изменению магнитного потока, создаваемого током в первичной обмотке. Если бы при этом ток в первичной обмотке остался неизменным, то это привело бы к уменьшению магнитного потока. Значит, включение нагрузки во вторичную цепь эквивалентно уменьшению индуктивности первичной цепи.

Но уменьшение индуктивного сопротивления немедленно приводит к увеличению тока в первичной обмотке, к уменьшению сдвига по фазе между напряжением и током и, следовательно, к увеличению потребляемой от внешней цепи мощности. Таким образом, если на холостом ходу трансформатор представляет собой почти чисто

индуктивное сопротивление, то по мере увеличения нагрузки трансформатора, т. е. тока во вторичной цепи, характер сопротивления первичной обмотки трансформатора становится ближе к активному.

Если потери энергии в самом трансформаторе малы, то на основании закона сохранения энергии потребляемая трансформатором мощность целиком передается нагрузке. Тогда с помощью (6) можно написать

где - сдвиги фаз между током и напряжением в первичной и вторичной цепях.

Приведенное выше рассмотрение работы трансформатора относится к идеализированному случаю трансформатора без потерь. В реальном трансформаторе всегда имеются потери, связанные с выделением джоулевой теплоты в обмотках, с токами Фуко, с необратимыми явлениями при перемагничивании сердечника и с рассеянием магнитного потока. Но в современных трансформаторах суммарные потери не превышают нескольких процентов от передаваемой мощности. Коэффициент полезного действия трансформаторов очень высок и лежит в пределах 95-99,5%.

Выпрямление переменного тока. Для многих практических применений необходимо преобразовать переменный синусоидальный ток в ток одного направления. Этой цели служат выпрямители, действие которых основано на односторонней проводимости ламповых и полупроводниковых диодов.

Понять действие выпрямителя можно, не вникая в физическую природу самого механизма односторонней проводимости.

Простейшая схема выпрямителя приведена на рис. 146а. Это однополупериодный выпрямитель, в котором ток через нагрузку течет только в течение одной половины каждого периода приложенного синусоидального напряжения.


Рис. 146. Схемы выпрямителей: однополупериодного (а), двухполупериодного (б) и с удвоением напряжения (в)

В мостиковой схеме выпрямителя, показанной на рис. 1466, ток через нагрузку идет в одном и том же направлении в течение обеих половин каждого периода. Но в таком двухполупериодном выпрямителе ток все-таки тоже пульсирует. Для сглаживания этих

пульсаций используют так называемые электрические фильтры, если требуется не только получить ток одного направления, но и постоянное напряжение.

В приведенных на рис. 146 а,б схемах максимальное значение напряжения на нагрузке (при идеальных диодах) равно амплитудному значению приложенного синусоидального напряжения. В показанной на рис. 146 в схеме выпрямителя напряжение на нагрузке практически вдвое больше амплитудного значения приложенного напряжения, если время разрядки конденсаторов через сопротивление нагрузки значительно превышает период Т синусоидального напряжения. Это так называемая схема с удвоением напряжения.

Задачи

1. Активное сопротивление первичной обмотки трансформатора составляет ее индуктивного сопротивления Какое напряжение будет на разомкнутой вторичной обмотке, имеющей вдвое больше витков, если первичную обмотку включить в сеть напряжением 220 В?

Решение. Напряжение на разомкнутой вторичной обмотке связано с напряжением на индуктивном сопротивлении первичной обмотки соотношением (17). Поэтому в рассматриваемом случае для действующих значений имеем дросселя, если сопротивление кипятильника (реактивная нагрузка) и

В каких случаях при расчете работы переменного тока можно пользоваться выражением (6) для средней мощности, а не выражением (5) для мгновенной мощности?

Каким образом можно уменьшить тепловые потери в линиях электропередачи, изменяя характер сопротивления нагрузки? Почему в сетях переменного тока потребитель энергии должен обладать практически активным в целом сопротивлением?

В чем преимущество использования линий высокого напряжения для передачи электроэнергии?

Какую роль в трансформаторе играет сердечник из материала с высокой магнитной проницаемостью? Почему железный сердечник трансформатора собирают из отдельных изолированных пластин?

Из формулы (17) следует, что коэффициент трансформации напряжения определяется отношением чисел витков Казалось бы, при отношении потери в трансформаторе будут тем меньше, чем меньше значения так как с увеличением числа витков растет активное сопротивление. Почему же у трансформаторов обмотки обычно содержат большое число витков?

Можно ли включать трансформатор в сеть постоянного тока?

Нарисуйте графики зависимости силы тока от времени в нагрузке выпрямителей, схемы которых показаны на рис. 146 а,б.

Объясните, почему в схеме выпрямителя на рис. 146 в происходит удвоение напряжения на нагрузке. Предложите схему выпрямителя, в котором на нагрузке происходило бы утроение напряжения.